Despite their original goal to jointly learn to align and translate, Neural Machine Translation (NMT) models, especially Transformer, are often perceived as not learning interpretable word alignments. In this paper, we show that NMT models do learn interpretable word alignments, which could only be revealed with proper interpretation methods. We propose a series of such methods that are model-agnostic, are able to be applied either offline or online, and do not require parameter update or architectural change. We show that under the force decoding setup, the alignments induced by our interpretation method are of better quality than fast-align for some systems, and when performing free decoding, they agree well with the alignments induced by automatic alignment tools.
This work describes our submission to the WMT18 Parallel Corpus Filtering shared task. We use a slightly modified version of the Zipporah Corpus Filtering toolkit (Xu and Koehn, 2017), which computes an adequacy score and a fluency score on a sentence pair, and use a weighted sum of the scores as the selection criteria. This work differs from Zipporah in that we experiment with using the noisy corpus to be filtered to compute the combination weights, and thus avoids generating synthetic data as in standard Zipporah.
We introduce Zipporah, a fast and scalable data cleaning system. We propose a novel type of bag-of-words translation feature, and train logistic regression models to classify good data and synthetic noisy data in the proposed feature space. The trained model is used to score parallel sentences in the data pool for selection. As shown in experiments, Zipporah selects a high-quality parallel corpus from a large, mixed quality data pool. In particular, for one noisy dataset, Zipporah achieves a 2.1 BLEU score improvement with using 1/5 of the data over using the entire corpus.