Haiqin Yang


pdf bib
PALI at SemEval-2021 Task 2: Fine-Tune XLM-RoBERTa for Word in Context Disambiguation
Shuyi Xie | Jian Ma | Haiqin Yang | Lianxin Jiang | Yang Mo | Jianping Shen
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper presents the PALI team’s winning system for SemEval-2021 Task 2: Multilingual and Cross-lingual Word-in-Context Disambiguation. We fine-tune XLM-RoBERTa model to solve the task of word in context disambiguation, i.e., to determine whether the target word in the two contexts contains the same meaning or not. In implementation, we first specifically design an input tag to emphasize the target word in the contexts. Second, we construct a new vector on the fine-tuned embeddings from XLM-RoBERTa and feed it to a fully-connected network to output the probability of whether the target word in the context has the same meaning or not. The new vector is attained by concatenating the embedding of the [CLS] token and the embeddings of the target word in the contexts. In training, we explore several tricks, such as the Ranger optimizer, data augmentation, and adversarial training, to improve the model prediction. Consequently, we attain the first place in all four cross-lingual tasks.

pdf bib
MagicPai at SemEval-2021 Task 7: Method for Detecting and Rating Humor Based on Multi-Task Adversarial Training
Jian Ma | Shuyi Xie | Haiqin Yang | Lianxin Jiang | Mengyuan Zhou | Xiaoyi Ruan | Yang Mo
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper describes MagicPai’s system for SemEval 2021 Task 7, HaHackathon: Detecting and Rating Humor and Offense. This task aims to detect whether the text is humorous and how humorous it is. There are four subtasks in the competition. In this paper, we mainly present our solution, a multi-task learning model based on adversarial examples, for task 1a and 1b. More specifically, we first vectorize the cleaned dataset and add the perturbation to obtain more robust embedding representations. We then correct the loss via the confidence level. Finally, we perform interactive joint learning on multiple tasks to capture the relationship between whether the text is humorous and how humorous it is. The final result shows the effectiveness of our system.

pdf bib
Sattiy at SemEval-2021 Task 9: An Ensemble Solution for Statement Verification and Evidence Finding with Tables
Xiaoyi Ruan | Meizhi Jin | Jian Ma | Haiqin Yang | Lianxin Jiang | Yang Mo | Mengyuan Zhou
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

Question answering from semi-structured tables can be seen as a semantic parsing task and is significant and practical for pushing the boundary of natural language understanding. Existing research mainly focuses on understanding contents from unstructured evidence, e.g., news, natural language sentences and documents. The task of verification from structured evidence, such as tables, charts, and databases, is still less-explored. This paper describes sattiy team’s system in SemEval-2021 task 9: Statement Verification and Evidence Finding with Tables (SEM-TAB-FACT)(CITATION). This competition aims to verify statements and to find evidence from tables for scientific articles and to promote proper interpretation of the surrounding article. In this paper we exploited ensemble models of pre-trained language models over tables, TaPas and TaBERT, for Task A and adjust the result based on some rules extracted for Task B. Finally, in the leadboard, we attain the F1 scores of 0.8496 and 0.7732 in Task A for the 2-way and 3-way evaluation, respectively, and the F1 score of 0.4856 in Task B.


pdf bib
UNIXLONG at SemEval-2020 Task 6: A Joint Model for Definition Extraction
ShuYi Xie | Jian Ma | Haiqin Yang | Jiang Lianxin | Mo Yang | Jianping Shen
Proceedings of the Fourteenth Workshop on Semantic Evaluation

Definition Extraction is the task to automatically extract terms and their definitions from text. In recent years, it attracts wide interest from NLP researchers. This paper describes the unixlong team’s system for the SemEval 2020 task6: DeftEval: Extracting term-definition pairs in free text. The goal of this task is to extract definition, word level BIO tags and relations. This task is challenging due to the free style of the text, especially the definitions of the terms range across several sentences and lack explicit verb phrases. We propose a joint model to train the tasks of definition extraction and the word level BIO tagging simultaneously. We design a creative format input of BERT to capture the location information between entity and its definition. Then we adjust the result of BERT with some rules. Finally, we apply TAG_ID, ROOT_ID, BIO tag to predict the relation and achieve macro-averaged F1 score 1.0 which rank first on the official test set in the relation extraction subtask.

pdf bib
FPAI at SemEval-2020 Task 10: A Query Enhanced Model with RoBERTa for Emphasis Selection
Chenyang Guo | Xiaolong Hou | Junsong Ren | Lianxin Jiang | Yang Mo | Haiqin Yang | Jianping Shen
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper describes the model we apply in the SemEval-2020 Task 10. We formalize the task of emphasis selection as a simplified query-based machine reading comprehension (MRC) task, i.e. answering a fixed question of “Find candidates for emphasis”. We propose our subword puzzle encoding mechanism and subword fusion layer to align and fuse subwords. By introducing the semantic prior knowledge of the informative query and some other techniques, we attain the 7th place during the evaluation phase and the first place during train phase.


pdf bib
HiGRU: Hierarchical Gated Recurrent Units for Utterance-Level Emotion Recognition
Wenxiang Jiao | Haiqin Yang | Irwin King | Michael R. Lyu
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

In this paper, we address three challenges in utterance-level emotion recognition in dialogue systems: (1) the same word can deliver different emotions in different contexts; (2) some emotions are rarely seen in general dialogues; (3) long-range contextual information is hard to be effectively captured. We therefore propose a hierarchical Gated Recurrent Unit (HiGRU) framework with a lower-level GRU to model the word-level inputs and an upper-level GRU to capture the contexts of utterance-level embeddings. Moreover, we promote the framework to two variants, Hi-GRU with individual features fusion (HiGRU-f) and HiGRU with self-attention and features fusion (HiGRU-sf), so that the word/utterance-level individual inputs and the long-range contextual information can be sufficiently utilized. Experiments on three dialogue emotion datasets, IEMOCAP, Friends, and EmotionPush demonstrate that our proposed Hi-GRU models attain at least 8.7%, 7.5%, 6.0% improvement over the state-of-the-art methods on each dataset, respectively. Particularly, by utilizing only the textual feature in IEMOCAP, our HiGRU models gain at least 3.8% improvement over the state-of-the-art conversational memory network (CMN) with the trimodal features of text, video, and audio.


pdf bib
EmotionX-DLC: Self-Attentive BiLSTM for Detecting Sequential Emotions in Dialogues
Linkai Luo | Haiqin Yang | Francis Y. L. Chin
Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media

In this paper, we propose a self-attentive bidirectional long short-term memory (SA-BiLSTM) network to predict multiple emotions for the EmotionX challenge. The BiLSTM exhibits the power of modeling the word dependencies, and extracting the most relevant features for emotion classification. Building on top of BiLSTM, the self-attentive network can model the contextual dependencies between utterances which are helpful for classifying the ambiguous emotions. We achieve 59.6 and 55.0 unweighted accuracy scores in the Friends and the EmotionPush test sets, respectively.