We introduce MTSwitch, a web-based system for the bidirectional translation between molecules and texts, leveraging various large language models (LLMs). It supports two crucial tasks, including molecule captioning (explaining the properties of a molecule) and molecule generation (designing a molecule based on specific properties). To the best of our knowledge, MTSwitch is currently the first accessible system that allows users to translate between molecular representations and descriptive text contents. The system and a screencast can be found in https://github.com/hanninaa/MTSwitch.
Multi-hop question answering (QA) involves finding multiple relevant passages and step-by-step reasoning to answer complex questions, indicating a retrieve-and-read paradigm. However, previous retrievers were customized for two-hop questions, and most of them were trained separately across different hops, resulting in a lack of supervision over the entire multi-hop retrieval process and leading to poor performance in complicated scenarios beyond two hops. In this work, we introduce Beam Retrieval, an end-to-end beam retrieval framework for multi-hop QA. This approach models the multi-hop retrieval process in an end-to-end manner by jointly optimizing an encoder and two classification heads across all hops. Moreover, Beam Retrieval maintains multiple partial hypotheses of relevant passages at each step, expanding the search space and reducing the risk of missing relevant passages. To establish a complete QA system, we incorporate a supervised reader or a large language model (LLM). Experimental results demonstrate that Beam Retrieval achieves a nearly 50% improvement compared with baselines on challenging MuSiQue-Ans, and it also surpasses all previous retrievers on HotpotQA and achieves 99.9% precision on 2WikiMultiHopQA. Providing high-quality context, Beam Retrieval helps our supervised reader achieve new state-of-the-art performance and substantially improves the few-shot QA performance of LLMs.
Emotion detection from text is a crucial task in understanding natural language with wide-ranging applications. Existing approaches for multilingual emotion detection from text face challenges with data scarcity across many languages and a lack of interpretability. We propose a novel method that leverages both monolingual and multilingual pre-trained language models to improve performance and interpretability. Our approach involves 1) training a high-performing English monolingual model in parallel with a multilingual model and 2) using knowledge distillation to transfer the emotion detection capabilities from the monolingual teacher to the multilingual student model. Experiments on a multilingual dataset demonstrate significant performance gains for refined multilingual models like XLM-RoBERTa and E5 after distillation. Furthermore, our approach enhances interpretability by enabling better identification of emotion-trigger words. Our work presents a promising direction for building accurate, robust and explainable multilingual emotion detection systems.
Accurate prediction of stock prices is considered as a significant practical challenge and has been a longstanding topic of debate within the economic domain. In recent years, sentiment analysis on social media comments has been considered an important data source for stock prediction. However, most of these works focus on exploring stocks with high market values or from specific industries. The extent to which sentiments affect a broader range of stocks and their overall performance remains uncertain. In this paper, we study the influence of sentiment analysis on stock price prediction with respect to (1) different market value groups and (2) different Book-to-Market ratio groups in the Chinese stock market. To this end, we create a new dataset that consists of 24 stocks across different market value groups and Book-to-Market ratio categories, along with 12,000 associated comments that have been collected and manually annotated. We then utilized this dataset to train a variety of sentiment classifiers, which were subsequently integrated into sequential neural-based models for stock price prediction. Experimental findings indicate that while sentiment integration generally improve the predictive performance for price prediction, it may not consistently lead to better results for individual stocks. Moreover, these outcomes are notably influenced by varying market values and Book-to-Market ratios, with stocks of higher market values and B/M ratios often exhibiting more accurate predictions. Among all the models tested, the Bi-LSTM model incorporated with the sentiment analysis, achieves the best prediction performance.
The Document Set Expansion (DSE) task involves identifying relevant documents from large collections based on a limited set of example documents. Previous research has highlighted Positive and Unlabeled (PU) learning as a promising approach for this task. However, most PU methods rely on the unrealistic assumption of knowing the class prior for positive samples in the collection. To address this limitation, this paper introduces a novel PU learning framework that utilizes intractable density estimation models. Experiments conducted on PubMed and Covid datasets in a transductive setting showcase the effectiveness of the proposed method for DSE. Code is available from https://github.com/Beautifuldog01/Document-set-expansion-puDE.
It has been shown that word embeddings can exhibit gender bias, and various methods have been proposed to quantify this. However, the extent to which the methods are capturing social stereotypes inherited from the data has been debated. Bias is a complex concept and there exist multiple ways to define it. Previous work has leveraged gender word pairs to measure bias and extract biased analogies. We show that the reliance on these gendered pairs has strong limitations: bias measures based off of them are not robust and cannot identify common types of real-world bias, whilst analogies utilising them are unsuitable indicators of bias. In particular, the well-known analogy “man is to computer-programmer as woman is to homemaker” is due to word similarity rather than bias. This has important implications for work on measuring bias in embeddings and related work debiasing embeddings.