This paper studies the impact of layer normalization (LayerNorm) on zero-shot translation (ZST). Recent efforts for ZST often utilize the Transformer architecture as the backbone, with LayerNorm at the input of layers (PreNorm) set as the default. However, Xu et al. (2019) has revealed that PreNorm carries the risk of overfitting the training data. Based on this, we hypothesize that PreNorm may overfit supervised directions and thus have low generalizability for ZST. Through experiments on OPUS, IWSLT, and Europarl datasets for 54 ZST directions, we demonstrate that the original Transformer setting of LayerNorm after residual connections (PostNorm) consistently outperforms PreNorm by up to 12.3 BLEU points. We then study the performance disparities by analyzing the differences in off-target rates and structural variations between PreNorm and PostNorm. This study highlights the need for careful consideration of the LayerNorm setting for ZST.
Contrastive pre-training on distant supervision has shown remarkable effectiveness in improving supervised relation extraction tasks. However, the existing methods ignore the intrinsic noise of distant supervision during the pre-training stage. In this paper, we propose a weighted contrastive learning method by leveraging the supervised data to estimate the reliability of pre-training instances and explicitly reduce the effect of noise. Experimental results on three supervised datasets demonstrate the advantages of our proposed weighted contrastive learning approach compared to two state-of-the-art non-weighted baselines. Our code and models are available at: https://github.com/YukinoWan/WCL.
Existing subword segmenters are either 1) frequency-based without semantics information or 2) neural-based but trained on parallel corpora. To address this, we present BERTSeg, an unsupervised neural subword segmenter for neural machine translation, which utilizes the contextualized semantic embeddings of words from characterBERT and maximizes the generation probability of subword segmentations. Furthermore, we propose a generation probability-based regularization method that enables BERTSeg to produce multiple segmentations for one word to improve the robustness of neural machine translation. Experimental results show that BERTSeg with regularization achieves up to 8 BLEU points improvement in 9 translation directions on ALT, IWSLT15 Vi->En, WMT16 Ro->En, and WMT15 Fi->En datasets compared with BPE. In addition, BERTSeg is efficient, needing up to 5 minutes for training.
Word alignment has proven to benefit many-to-many neural machine translation (NMT). However, high-quality ground-truth bilingual dictionaries were used for pre-editing in previous methods, which are unavailable for most language pairs. Meanwhile, the contrastive objective can implicitly utilize automatically learned word alignment, which has not been explored in many-to-many NMT. This work proposes a word-level contrastive objective to leverage word alignments for many-to-many NMT. Empirical results show that this leads to 0.8 BLEU gains for several language pairs. Analyses reveal that in many-to-many NMT, the encoder’s sentence retrieval performance highly correlates with the translation quality, which explains when the proposed method impacts translation. This motivates future exploration for many-to-many NMT to improve the encoder’s sentence retrieval performance.
Video-guided machine translation, as one type of multimodal machine translations, aims to engage video contents as auxiliary information to address the word sense ambiguity problem in machine translation. Previous studies only use features from pretrained action detection models as motion representations of the video to solve the verb sense ambiguity, leaving the noun sense ambiguity a problem. To address this problem, we propose a video-guided machine translation system by using both spatial and motion representations in videos. For spatial features, we propose a hierarchical attention network to model the spatial information from object-level to video-level. Experiments on the VATEX dataset show that our system achieves 35.86 BLEU-4 score, which is 0.51 score higher than the single model of the SOTA method.
Sequence-to-sequence (S2S) pre-training using large monolingual data is known to improve performance for various S2S NLP tasks. However, large monolingual corpora might not always be available for the languages of interest (LOI). Thus, we propose to exploit monolingual corpora of other languages to complement the scarcity of monolingual corpora for the LOI. We utilize script mapping (Chinese to Japanese) to increase the similarity (number of cognates) between the monolingual corpora of helping languages and LOI. An empirical case study of low-resource Japanese-English neural machine translation (NMT) reveals that leveraging large Chinese and French monolingual corpora can help overcome the shortage of Japanese and English monolingual corpora, respectively, for S2S pre-training. Using only Chinese and French monolingual corpora, we were able to improve Japanese-English translation quality by up to 8.5 BLEU in low-resource scenarios.
Lectures translation is a case of spoken language translation and there is a lack of publicly available parallel corpora for this purpose. To address this, we examine a framework for parallel corpus mining which is a quick and effective way to mine a parallel corpus from publicly available lectures at Coursera. Our approach determines sentence alignments, relying on machine translation and cosine similarity over continuous-space sentence representations. We also show how to use the resulting corpora in a multistage fine-tuning based domain adaptation for high-quality lectures translation. For Japanese–English lectures translation, we extracted parallel data of approximately 40,000 lines and created development and test sets through manual filtering for benchmarking translation performance. We demonstrate that the mined corpus greatly enhances the quality of translation when used in conjunction with out-of-domain parallel corpora via multistage training. This paper also suggests some guidelines to gather and clean corpora, mine parallel sentences, address noise in the mined data, and create high-quality evaluation splits. For the sake of reproducibility, we have released our code for parallel data creation.
Neural machine translation (NMT) needs large parallel corpora for state-of-the-art translation quality. Low-resource NMT is typically addressed by transfer learning which leverages large monolingual or parallel corpora for pre-training. Monolingual pre-training approaches such as MASS (MAsked Sequence to Sequence) are extremely effective in boosting NMT quality for languages with small parallel corpora. However, they do not account for linguistic information obtained using syntactic analyzers which is known to be invaluable for several Natural Language Processing (NLP) tasks. To this end, we propose JASS, Japanese-specific Sequence to Sequence, as a novel pre-training alternative to MASS for NMT involving Japanese as the source or target language. JASS is joint BMASS (Bunsetsu MASS) and BRSS (Bunsetsu Reordering Sequence to Sequence) pre-training which focuses on Japanese linguistic units called bunsetsus. In our experiments on ASPEC Japanese–English and News Commentary Japanese–Russian translation we show that JASS can give results that are competitive with if not better than those given by MASS. Furthermore, we show for the first time that joint MASS and JASS pre-training gives results that significantly surpass the individual methods indicating their complementary nature. We will release our code, pre-trained models and bunsetsu annotated data as resources for researchers to use in their own NLP tasks.
The global pandemic of COVID-19 has made the public pay close attention to related news, covering various domains, such as sanitation, treatment, and effects on education. Meanwhile, the COVID-19 condition is very different among the countries (e.g., policies and development of the epidemic), and thus citizens would be interested in news in foreign countries. We build a system for worldwide COVID-19 information aggregation containing reliable articles from 10 regions in 7 languages sorted by topics. Our reliable COVID-19 related website dataset collected through crowdsourcing ensures the quality of the articles. A neural machine translation module translates articles in other languages into Japanese and English. A BERT-based topic-classifier trained on our article-topic pair dataset helps users find their interested information efficiently by putting articles into different categories.