Hamed Hematian Hemati
2024
Consistency Training by Synthetic Question Generation for Conversational Question Answering
Hamed Hematian Hemati
|
Hamid Beigy
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
Efficiently modeling historical information is a critical component in addressing user queries within a conversational question-answering (QA) context, as historical context plays a vital role in clarifying the user’s questions. However, irrelevant history induces noise in the reasoning process, especially for those questions with a considerable historical context. In our novel model-agnostic approach, referred to as **CoTaH** (**Co**nsistency-**T**rained **a**ugmented **H**istory), we augment the historical information with synthetic questions and subsequently employ consistency training to train a model that utilizes both real and augmented historical data to implicitly make the reasoning robust to irrelevant history. To the best of our knowledge, this is the first instance of research using synthetic question generation as a form of data augmentation to model conversational QA settings. By citing a common modeling error prevalent in previous research, we introduce a new baseline and compare our model’s performance against it, demonstrating an improvement in results, particularly in later turns of the conversation, when dealing with questions that include a large historical context.
2023
SUTNLP at SemEval-2023 Task 4: LG-Transformer for Human Value Detection
Hamed Hematian Hemati
|
Sayed Hesam Alavian
|
Hossein Sameti
|
Hamid Beigy
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
When we interact with other humans, humanvalues guide us to consider the human element. As we shall see, value analysis in NLP hasbeen applied to personality profiling but not toargument mining. As part of SemEval-2023Shared Task 4, our system paper describes amulti-label classifier for identifying human val-ues. Human value detection requires multi-label classification since each argument maycontain multiple values. In this paper, we pro-pose an architecture called Label Graph Trans-former (LG-Transformer). LG-Transformeris a two-stage pipeline consisting of a trans-former jointly encoding argument and labelsand a graph module encoding and obtainingfurther interactions between labels. Using ad-versarial training, we can boost performanceeven further. Our best method scored 50.00 us-ing F1 score on the test set, which is 7.8 higherthan the best baseline method. Our code ispublicly available on Github.
SUTNLP at SemEval-2023 Task 10: RLAT-Transformer for explainable online sexism detection
Hamed Hematian Hemati
|
Sayed Hesam Alavian
|
Hamid Beigy
|
Hossein Sameti
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
There is no simple definition of sexism, butit can be described as prejudice, stereotyping,or discrimination, especially against women,based on their gender. In online interactions,sexism is common. One out of ten Americanadults says that they have been harassed be-cause of their gender and have been the targetof sexism, so sexism is a growing issue. TheExplainable Detection of Online Sexism sharedtask in SemEval-2023 aims at building sexismdetection systems for the English language. Inorder to address the problem, we use largelanguage models such as RoBERTa and De-BERTa. In addition, we present Random LayerAdversarial Training (RLAT) for transformers,and show its significant impact on solving allsubtasks. Moreover, we use virtual adversar-ial training and contrastive learning to improveperformance on subtask A. Upon completionof subtask A, B, and C test sets, we obtainedmacro-F1 of 84.45, 67.78, and 52.52, respec-tively outperforming proposed baselines on allsubtasks. Our code is publicly available onGithub.
Search