Hamish Ivison


2024

pdf bib
TESS: Text-to-Text Self-Conditioned Simplex Diffusion
Rabeeh Karimi Mahabadi | Hamish Ivison | Jaesung Tae | James Henderson | Iz Beltagy | Matthew Peters | Arman Cohan
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Diffusion models have emerged as a powerful paradigm for generation, obtaining strong performance in various continuous domains. However, applying continuous diffusion models to natural language remains challenging due to its discrete nature and the need for a large number of diffusion steps to generate text, making diffusion-based generation expensive.In this work, we propose Text-to-text Self-conditioned Simplex Diffusion (TESS), a text diffusion model that is fully non-autoregressive, employs a new form of self-conditioning, and applies the diffusion process on the logit simplex space rather than the learned embedding space.Through extensive experiments on natural language understanding and generation tasks including summarization, text simplification, paraphrase generation, and question generation, we demonstrate that TESS outperforms state-of-the-art non-autoregressive models, requires fewer diffusion steps with minimal drop in performance, and is competitive with pretrained autoregressive sequence-to-sequence models.

pdf bib
OLMo: Accelerating the Science of Language Models
Dirk Groeneveld | Iz Beltagy | Evan Walsh | Akshita Bhagia | Rodney Kinney | Oyvind Tafjord | Ananya Jha | Hamish Ivison | Ian Magnusson | Yizhong Wang | Shane Arora | David Atkinson | Russell Authur | Khyathi Chandu | Arman Cohan | Jennifer Dumas | Yanai Elazar | Yuling Gu | Jack Hessel | Tushar Khot | William Merrill | Jacob Morrison | Niklas Muennighoff | Aakanksha Naik | Crystal Nam | Matthew Peters | Valentina Pyatkin | Abhilasha Ravichander | Dustin Schwenk | Saurabh Shah | William Smith | Emma Strubell | Nishant Subramani | Mitchell Wortsman | Pradeep Dasigi | Nathan Lambert | Kyle Richardson | Luke Zettlemoyer | Jesse Dodge | Kyle Lo | Luca Soldaini | Noah Smith | Hannaneh Hajishirzi
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Language models (LMs) have become ubiquitous in both NLP research and in commercial product offerings. As their commercial importance has surged, the most powerful models have become closed off, gated behind proprietary interfaces, with important details of their training data, architectures, and development undisclosed. Given the importance of these details in scientifically studying these models, including their biases and potential risks, we believe it is essential for the research community to have access to powerful, truly open LMs. To this end, we have built OLMo, a competitive, truly Open Language Model, to enable the scientific study of language models. Unlike most prior efforts that have only released model weights and inference code, we release OLMo alongside open training data and training and evaluation code. We hope this release will empower the open research community and inspire a new wave of innovation.

2023

pdf bib
HINT: Hypernetwork Instruction Tuning for Efficient Zero- and Few-Shot Generalisation
Hamish Ivison | Akshita Bhagia | Yizhong Wang | Hannaneh Hajishirzi | Matthew Peters
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent NLP models have shown the remarkable ability to effectively generalise ‘zero-shot’ to new tasks using only natural language instructions as guidance. However, many of these approaches suffer from high computational costs due to their reliance on concatenating lengthy instructions with every input example, resulting in costly reprocessing of the instruction. To avoid this, we introduce Hypernetworks for INstruction Tuning (HINT), which convert task instructions and examples into parameter-efficient modules inserted into an underlying model using a pretrained text encoder, eliminating the need to include instructions in the model input. The hypernetwork in HINT also produces an encoded instruction, which we concatenate with encoded inputs during decoding to further improve performance. HINT models outperform strong state-of-the-art baselines by over 10% when controlling for compute (measured in FLOPs). By converting instructions into modules, HINT models can effectively disregard the length of instructions and few-shot example inputs in terms of compute usage. As a result, HINT can enhance its performance by up to 25% by incorporating additional few-shot data, while utilizing only up to 5% more compute. This combines the strengths of parameter-efficient fine-tuning and in-context learning.

pdf bib
Data-Efficient Finetuning Using Cross-Task Nearest Neighbors
Hamish Ivison | Noah A. Smith | Hannaneh Hajishirzi | Pradeep Dasigi
Findings of the Association for Computational Linguistics: ACL 2023

Obtaining labeled data to train a model for a task of interest is often expensive. Prior work shows training models on multitask data augmented with task descriptions (prompts) effectively transfers knowledge to new tasks. Towards efficiently building task-specific models, we assume access to a small number (32-1000) of unlabeled target-task examples and use those to retrieve the most similar labeled examples from a large pool of multitask data augmented with prompts. Compared to the current practice of finetuning models on uniformly sampled prompted multitask data (e.g.: FLAN, T0), our approach of finetuning on cross-task nearest neighbors is significantly more data-efficient. Using only 2% of the data from the P3 pool without any labeled target-task data, our models outperform strong baselines trained on all available data by 3-30% on 12 out of 14 datasets representing held-out tasks including legal and scientific document QA. Similarly, models trained on cross-task nearest neighbors from SuperNaturalInstructions, representing about 5% of the pool, obtain comparable performance to state-of-the-art models on 12 held-out tasks from that pool. Moreover, the models produced by our approach also provide a better initialization than single multitask finetuned models for few-shot finetuning on target-task data, as shown by a 2-23% relative improvement over few-shot finetuned T0-3B models on 8 datasets.

2022

pdf bib
Hyperdecoders: Instance-specific decoders for multi-task NLP
Hamish Ivison | Matthew Peters
Findings of the Association for Computational Linguistics: EMNLP 2022

We investigate input-conditioned hypernetworks for multi-tasking in NLP, generating parameter-efficient adaptations for a decoder using a hypernetwork conditioned on the output of an encoder. This approach produces a unique decoder adaptation for every input instance, allowing the network a larger degree of flexibility than prior work that only produces one decoder adaptation per task. We apply our method to sequence classification tasks, extractive QA, and summarisation and find that it surpasses previous parameter efficient fine-tuning methods and often outperforms fully finetuning the underlying model. An analysis of the embeddings used by our hypernetwork shows that they are sensitive to output label and type, suggesting that our approach better maps from encoder representations to output labels. Our code is publicly available at https://github.com/allenai/hyperdecoders.