Han Cheol Moon
2023
Randomized Smoothing with Masked Inference for Adversarially Robust Text Classifications
Han Cheol Moon
|
Shafiq Joty
|
Ruochen Zhao
|
Megh Thakkar
|
Chi Xu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large-scale pre-trained language models have shown outstanding performance in a variety of NLP tasks. However, they are also known to be significantly brittle against specifically crafted adversarial examples, leading to increasing interest in probing the adversarial robustness of NLP systems. We introduce RSMI, a novel two-stage framework that combines randomized smoothing (RS) with masked inference (MI) to improve the adversarial robustness of NLP systems. RS transforms a classifier into a smoothed classifier to obtain robust representations, whereas MI forces a model to exploit the surrounding context of a masked token in an input sequence. RSMI improves adversarial robustness by 2 to 3 times over existing state-of-the-art methods on benchmark datasets. We also perform in-depth qualitative analysis to validate the effectiveness of the different stages of RSMI and probe the impact of its components through extensive ablations. By empirically proving the stability of RSMI, we put it forward as a practical method to robustly train large-scale NLP models. Our code and datasets are available at https://github.com/Han8931/rsmi_nlp
2019
A Unified Neural Coherence Model
Han Cheol Moon
|
Tasnim Mohiuddin
|
Shafiq Joty
|
Chi Xu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Recently, neural approaches to coherence modeling have achieved state-of-the-art results in several evaluation tasks. However, we show that most of these models often fail on harder tasks with more realistic application scenarios. In particular, the existing models underperform on tasks that require the model to be sensitive to local contexts such as candidate ranking in conversational dialogue and in machine translation. In this paper, we propose a unified coherence model that incorporates sentence grammar, inter-sentence coherence relations, and global coherence patterns into a common neural framework. With extensive experiments on local and global discrimination tasks, we demonstrate that our proposed model outperforms existing models by a good margin, and establish a new state-of-the-art.