Han Cui
2024
Exploring Hybrid Question Answering via Program-based Prompting
Qi Shi
|
Han Cui
|
Haofeng Wang
|
Qingfu Zhu
|
Wanxiang Che
|
Ting Liu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Question answering over heterogeneous data requires reasoning over diverse sources of data, which is challenging due to the large scale of information and organic coupling of heterogeneous data. Various approaches have been proposed to address these challenges. One approach involves training specialized retrievers to select relevant information, thereby reducing the input length. Another approach is to transform diverse modalities of data into a single modality, simplifying the task difficulty and enabling more straightforward processing. In this paper, we propose HProPro, a novel program-based prompting framework for the hybrid question answering task. HProPro follows the code generation and execution paradigm. In addition, HProPro integrates various functions to tackle the hybrid reasoning scenario. Specifically, HProPro contains function declaration and function implementation to perform hybrid information-seeking over data from various sources and modalities, which enables reasoning over such data without training specialized retrievers or performing modal transformations. Experimental results on two typical hybrid question answering benchmarks HybridQA and MultiModalQA demonstrate the effectiveness of HProPro: it surpasses all baseline systems and achieves the best performances in the few-shot settings on both datasets.
2023
Explanation Graph Generation via Generative Pre-training over Synthetic Graphs
Han Cui
|
Shangzhan Li
|
Yu Zhang
|
Qi Shi
Findings of the Association for Computational Linguistics: ACL 2023
The generation of explanation graphs is a significant task that aims to produce explanation graphs in response to user input, revealing the internal reasoning process. This task is challenging due to the significant discrepancy be- tween unstructured user queries and structured explanation graphs. Current research commonly fine-tunes a text-based pre-trained language model on a small downstream dataset that is annotated with labeled graphs. However, due to the limited scale of available datasets, this approach may prove to be insufficient in bridging the gap between natural language text and structured graphs. In this paper, to alleviate the above limitations, we propose a novel pre-trained framework EG3P(for Explanation Graph Generation via Generative Pre-training over synthetic graphs) for the explanation graph generation task. Specifically, we first propose a text-to-graph generative task to pre-train the model with the goal of bridging the text-graph gap. Additionally, we propose an automatic corpus synthesis strategy for synthesizing a large scale of high-quality corpus, reducing the reliance on costly manual annotation methods. Experimental results on ExplaGraphs show the effectiveness of EG3P that our model surpasses all baseline systems with remarkable margins. Besides, further analysis demonstrates that EG3P is able to generate better explanation graphs on actual reasoning tasks such as CommonsenseQA and OpenbookQA.
Search
Fix data
Co-authors
- Qi Shi 2
- Wanxiang Che (车万翔) 1
- Shangzhan Li 1
- Ting Liu 1
- Haofeng Wang 1
- show all...