Han Zhang


2024

pdf bib
EmpathyEar: An Open-source Avatar Multimodal Empathetic Chatbot
Hao Fei | Han Zhang | Bin Wang | Lizi Liao | Qian Liu | Erik Cambria
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

This paper introduces EmpathyEar, a pioneering open-source, avatar-based multimodal empathetic chatbot, to fill the gap in traditional text-only empathetic response generation (ERG) systems. Leveraging the advancements of a large language model, combined with multimodal encoders and generators, EmpathyEar supports user inputs in any combination of text, sound, and vision, and produces multimodal empathetic responses, offering users, not just textual responses but also digital avatars with talking faces and synchronized speeches. A series of emotion-aware instruction-tuning is performed for comprehensive emotional understanding and generation capabilities. In this way, EmpathyEar provides users with responses that achieve a deeper emotional resonance, closely emulating human-like empathy. The system paves the way for the next emotional intelligence, for which we open-source the code for public access.

pdf bib
NUS-Emo at SemEval-2024 Task 3: Instruction-Tuning LLM for Multimodal Emotion-Cause Analysis in Conversations
Meng Luo | Han Zhang | Shengqiong Wu | Bobo Li | Hong Han | Hao Fei
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

This paper describes the architecture of our system developed for participation in Task 3 of SemEval-2024: Multimodal Emotion-Cause Analysis in Conversations. Our project targets the challenges of subtask 2, dedicated to Multimodal Emotion-Cause Pair Extraction with Emotion Category (MECPE-Cat), and constructs a dual-component system tailored to the unique challenges of this task. We divide the task into two subtasks: emotion recognition in conversation (ERC) and emotion-cause pair extraction (ECPE). To address these subtasks, we capitalize on the abilities of Large Language Models (LLMs), which have consistently demonstrated state-of-the-art performance across various natural language processing tasks and domains. Most importantly, we design an approach of emotion-cause-aware instruction-tuning for LLMs, to enhance the perception of the emotions with their corresponding causal rationales. Our method enables us to adeptly navigate the complexities of MECPE-Cat, achieving an average 34.71% F1 score of the task, and securing the 2nd rank on the leaderboard. The code and metadata to reproduce our experiments are all made publicly available.

pdf bib
Incremental pre-training from smaller language models
Han Zhang | Hui Wang | Ruifeng Xu
Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10)

Large language models have recently become a new learning paradigm and led to state-of-the-art performance across a range of tasks. As explosive open-source pre-trained models are available, it is worth investigating how to better utilize existing models. We propose a simple yet effective method, Incr-Pretrain, for incrementally pre-training language models from smaller well-trained source models. Different layer-wise transfer strategies were introduced for model augmentation including parameter copying, initial value padding, and model distillation. Experiments on multiple zero-shot learning tasks demonstrate satisfying inference performance upon transferring and promising training efficiency during continuing pre-training. Compared to training from scratch, Incr-Pretrain can save up to half the training time to get a similar testing loss.

2022

pdf bib
Dimension Reduction for Efficient Dense Retrieval via Conditional Autoencoder
Zhenghao Liu | Han Zhang | Chenyan Xiong | Zhiyuan Liu | Yu Gu | Xiaohua Li
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Dense retrievers encode queries and documents and map them in an embedding space using pre-trained language models. These embeddings need to be high-dimensional to fit training signals and guarantee the retrieval effectiveness of dense retrievers. However, these high-dimensional embeddings lead to larger index storage and higher retrieval latency. To reduce the embedding dimensions of dense retrieval, this paper proposes a Conditional Autoencoder (ConAE) to compress the high-dimensional embeddings to maintain the same embedding distribution and better recover the ranking features. Our experiments show that ConAE is effective in compressing embeddings by achieving comparable ranking performance with its teacher model and making the retrieval system more efficient. Our further analyses show that ConAE can alleviate the redundancy of the embeddings of dense retrieval with only one linear layer. All codes of this work are available at https://github.com/NEUIR/ConAE.

pdf bib
CLLE: A Benchmark for Continual Language Learning Evaluation in Multilingual Machine Translation
Han Zhang | Sheng Zhang | Yang Xiang | Bin Liang | Jinsong Su | Zhongjian Miao | Hui Wang | Ruifeng Xu
Findings of the Association for Computational Linguistics: EMNLP 2022

Continual Language Learning (CLL) in multilingual translation is inevitable when new languages are required to be translated. Due to the lack of unified and generalized benchmarks, the evaluation of existing methods is greatly influenced by experimental design which usually has a big gap from the industrial demands. In this work, we propose the first Continual Language Learning Evaluation benchmark CLLE in multilingual translation. CLLE consists of a Chinese-centric corpus — CN-25 and two CLL tasks — the close-distance language continual learning task and the language family continual learning task designed for real and disparate demands. Different from existing translation benchmarks, CLLE considers several restrictions for CLL, including domain distribution alignment, content overlap, language diversity, and the balance of corpus. Furthermore, we propose a novel framework COMETA based on Constrained Optimization and META-learning to alleviate catastrophic forgetting and dependency on history training data by using a meta-model to retain the important parameters for old languages. Our experiments prove that CLLE is a challenging CLL benchmark and that our proposed method is effective when compared with other strong baselines. Due to the construction of the corpus, the task designing and the evaluation method are independent of the centric language, we also construct and release the English-centric corpus EN-25 to facilitate academic research.

2021

pdf bib
ERNIE-Gram: Pre-Training with Explicitly N-Gram Masked Language Modeling for Natural Language Understanding
Dongling Xiao | Yu-Kun Li | Han Zhang | Yu Sun | Hao Tian | Hua Wu | Haifeng Wang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Coarse-grained linguistic information, such as named entities or phrases, facilitates adequately representation learning in pre-training. Previous works mainly focus on extending the objective of BERT’s Masked Language Modeling (MLM) from masking individual tokens to contiguous sequences of n tokens. We argue that such contiguously masking method neglects to model the intra-dependencies and inter-relation of coarse-grained linguistic information. As an alternative, we propose ERNIE-Gram, an explicitly n-gram masking method to enhance the integration of coarse-grained information into pre-training. In ERNIE-Gram, n-grams are masked and predicted directly using explicit n-gram identities rather than contiguous sequences of n tokens. Furthermore, ERNIE-Gram employs a generator model to sample plausible n-gram identities as optional n-gram masks and predict them in both coarse-grained and fine-grained manners to enable comprehensive n-gram prediction and relation modeling. We pre-train ERNIE-Gram on English and Chinese text corpora and fine-tune on 19 downstream tasks. Experimental results show that ERNIE-Gram outperforms previous pre-training models like XLNet and RoBERTa by a large margin, and achieves comparable results with state-of-the-art methods. The source codes and pre-trained models have been released at https://github.com/PaddlePaddle/ERNIE.

2019

pdf bib
Multimodal, Multilingual Grapheme-to-Phoneme Conversion for Low-Resource Languages
James Route | Steven Hillis | Isak Czeresnia Etinger | Han Zhang | Alan W Black
Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019)

Grapheme-to-phoneme conversion (g2p) is the task of predicting the pronunciation of words from their orthographic representation. His- torically, g2p systems were transition- or rule- based, making generalization beyond a mono- lingual (high resource) domain impractical. Recently, neural architectures have enabled multilingual systems to generalize widely; however, all systems to date have been trained only on spelling-pronunciation pairs. We hy- pothesize that the sequences of IPA characters used to represent pronunciation do not capture its full nuance, especially when cleaned to fa- cilitate machine learning. We leverage audio data as an auxiliary modality in a multi-task training process to learn a more optimal inter- mediate representation of source graphemes; this is the first multimodal model proposed for multilingual g2p. Our approach is highly ef- fective: on our in-domain test set, our mul- timodal model reduces phoneme error rate to 2.46%, a more than 65% decrease compared to our implementation of a unimodal spelling- pronunciation model—which itself achieves state-of-the-art results on the Wiktionary test set. The advantages of the multimodal model generalize to wholly unseen languages, reduc- ing phoneme error rate on our out-of-domain test set to 6.39% from the unimodal 8.21%, a more than 20% relative decrease. Further- more, our training and test sets are composed primarily of low-resource languages, demon- strating that our multimodal approach remains useful when training data are constrained.

2018

pdf bib
A Teacher-Student Framework for Maintainable Dialog Manager
Weikang Wang | Jiajun Zhang | Han Zhang | Mei-Yuh Hwang | Chengqing Zong | Zhifei Li
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Reinforcement learning (RL) is an attractive solution for task-oriented dialog systems. However, extending RL-based systems to handle new intents and slots requires a system redesign. The high maintenance cost makes it difficult to apply RL methods to practical systems on a large scale. To address this issue, we propose a practical teacher-student framework to extend RL-based dialog systems without retraining from scratch. Specifically, the “student” is an extended dialog manager based on a new ontology, and the “teacher” is existing resources used for guiding the learning process of the “student”. By specifying constraints held in the new dialog manager, we transfer knowledge of the “teacher” to the “student” without additional resources. Experiments show that the performance of the extended system is comparable to the system trained from scratch. More importantly, the proposed framework makes no assumption about the unsupported intents and slots, which makes it possible to improve RL-based systems incrementally.