Hang Gao


2024

pdf bib
ECoK: Emotional Commonsense Knowledge Graph for Mining Emotional Gold
Zhunheng Wang | Xiaoyi Liu | Mengting Hu | Rui Ying | Ming Jiang | Jianfeng Wu | Yalan Xie | Hang Gao | Renhong Cheng
Findings of the Association for Computational Linguistics: ACL 2024

The demand for understanding and expressing emotions in the field of natural language processing is growing rapidly. Knowledge graphs, as an important form of knowledge representation, have been widely utilized in various emotion-related tasks. However, existing knowledge graphs mainly focus on the representation and reasoning of general factual knowledge, while there are still significant deficiencies in the understanding and reasoning of emotional knowledge. In this work, we construct a comprehensive and accurate emotional commonsense knowledge graph, ECoK. We integrate cutting-edge theories from multiple disciplines such as psychology, cognitive science, and linguistics, and combine techniques such as large language models and natural language processing. By mining a large amount of text, dialogue, and sentiment analysis data, we construct rich emotional knowledge and establish the knowledge generation model COMET-ECoK. Experimental results show that ECoK contains high-quality emotional reasoning knowledge, and the performance of our knowledge generation model surpasses GPT-4-Turbo, which can help downstream tasks better understand and reason about emotions. Our data and code is available from https://github.com/ZornWang/ECoK.

pdf bib
BvSP: Broad-view Soft Prompting for Few-Shot Aspect Sentiment Quad Prediction
Yinhao Bai | Yalan Xie | Xiaoyi Liu | Yuhua Zhao | Zhixin Han | Mengting Hu | Hang Gao | Renhong Cheng
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Aspect sentiment quad prediction (ASQP) aims to predict four aspect-based elements, including aspect term, opinion term, aspect category, and sentiment polarity. In practice, unseen aspects, due to distinct data distribution, impose many challenges for a trained neural model. Motivated by this, this work formulates ASQP into the few-shot scenario, which aims for fast adaptation in real applications. Therefore, we first construct a few-shot ASQP dataset (FSQP) that contains richer categories and is more balanced for the few-shot study. Moreover, recent methods extract quads through a generation paradigm, which involves converting the input sentence into a templated target sequence. However, they primarily focus on the utilization of a single template or the consideration of different template orders, thereby overlooking the correlations among various templates. To tackle this issue, we further propose a Broad-view Soft Prompting (BvSP) method that aggregates multiple templates with a broader view by taking into account the correlation between the different templates. Specifically, BvSP uses the pre-trained language model to select the most relevant k templates with Jensen–Shannon divergence. BvSP further introduces soft prompts to guide the pre-trained language model using the selected templates. Then, we aggregate the results of multi-templates by voting mechanism. Empirical results demonstrate that BvSP significantly outperforms the state-of-the-art methods under four few-shot settings and other public datasets. Our code and dataset are available at https://github.com/byinhao/BvSP.

pdf bib
Simple but Effective Compound Geometric Operations for Temporal Knowledge Graph Completion
Rui Ying | Mengting Hu | Jianfeng Wu | Yalan Xie | Xiaoyi Liu | Zhunheng Wang | Ming Jiang | Hang Gao | Linlin Zhang | Renhong Cheng
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Temporal knowledge graph completion aims to infer the missing facts in temporal knowledge graphs. Current approaches usually embed factual knowledge into continuous vector space and apply geometric operations to learn potential patterns in temporal knowledge graphs. However, these methods only adopt a single operation, which may have limitations in capturing the complex temporal dynamics present in temporal knowledge graphs. Therefore, we propose a simple but effective method, i.e. TCompoundE, which is specially designed with two geometric operations, including time-specific and relation-specific operations. We provide mathematical proofs to demonstrate the ability of TCompoundE to encode various relation patterns. Experimental results show that our proposed model significantly outperforms existing temporal knowledge graph embedding models. Our code is available at https://github.com/nk-ruiying/TCompoundE.

2023

pdf bib
Uncertainty-Aware Unlikelihood Learning Improves Generative Aspect Sentiment Quad Prediction
Mengting Hu | Yinhao Bai | Yike Wu | Zhen Zhang | Liqi Zhang | Hang Gao | Shiwan Zhao | Minlie Huang
Findings of the Association for Computational Linguistics: ACL 2023

Recently, aspect sentiment quad prediction has received widespread attention in the field of aspect-based sentiment analysis. Existing studies extract quadruplets via pre-trained generative language models to paraphrase the original sentence into a templated target sequence. However, previous works only focus on what to generate but ignore what not to generate. We argue that considering the negative samples also leads to potential benefits. In this work, we propose a template-agnostic method to control the token-level generation, which boosts original learning and reduces mistakes simultaneously. Specifically, we introduce Monte Carlo dropout to understand the built-in uncertainty of pre-trained language models, acquiring the noises and errors. We further propose marginalized unlikelihood learning to suppress the uncertainty-aware mistake tokens. Finally, we introduce minimization entropy to balance the effects of marginalized unlikelihood learning. Extensive experiments on four public datasets demonstrate the effectiveness of our approach on various generation templates.

2022

pdf bib
Improving Aspect Sentiment Quad Prediction via Template-Order Data Augmentation
Mengting Hu | Yike Wu | Hang Gao | Yinhao Bai | Shiwan Zhao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Recently, aspect sentiment quad prediction (ASQP) has become a popular task in the field of aspect-level sentiment analysis. Previous work utilizes a predefined template to paraphrase the original sentence into a structure target sequence, which can be easily decoded as quadruplets of the form (aspect category, aspect term, opinion term, sentiment polarity). The template involves the four elements in a fixed order. However, we observe that this solution contradicts with the order-free property of the ASQP task, since there is no need to fix the template order as long as the quadruplet is extracted correctly. Inspired by the observation, we study the effects of template orders and find that some orders help the generative model achieve better performance. It is hypothesized that different orders provide various views of the quadruplet. Therefore, we propose a simple but effective method to identify the most proper orders, and further combine multiple proper templates as data augmentation to improve the ASQP task. Specifically, we use the pre-trained language model to select the orders with minimal entropy. By fine-tuning the pre-trained language model with these template orders, our approach improves the performance of quad prediction, and outperforms state-of-the-art methods significantly in low-resource settings.

pdf bib
Classical Sequence Match Is a Competitive Few-Shot One-Class Learner
Mengting Hu | Hang Gao | Yinhao Bai | Mingming Liu
Proceedings of the 29th International Conference on Computational Linguistics

Nowadays, transformer-based models gradually become the default choice for artificial intelligence pioneers. The models also show superiority even in the few-shot scenarios. In this paper, we revisit the classical methods and propose a new few-shot alternative. Specifically, we investigate the few-shot one-class problem, which actually takes a known sample as a reference to detect whether an unknown instance belongs to the same class. This problem can be studied from the perspective of sequence match. It is shown that with meta-learning, the classical sequence match method, i.e. Compare-Aggregate, significantly outperforms transformer ones. The classical approach requires much less training cost. Furthermore, we perform an empirical comparison between two kinds of sequence match approaches under simple fine-tuning and meta-learning. Meta-learning causes the transformer models’ features to have high-correlation dimensions. The reason is closely related to the number of layers and heads of transformer models. Experimental codes and data are available at https://github.com/hmt2014/FewOne.

2021

pdf bib
Multi-Label Few-Shot Learning for Aspect Category Detection
Mengting Hu | Shiwan Zhao | Honglei Guo | Chao Xue | Hang Gao | Tiegang Gao | Renhong Cheng | Zhong Su
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Aspect category detection (ACD) in sentiment analysis aims to identify the aspect categories mentioned in a sentence. In this paper, we formulate ACD in the few-shot learning scenario. However, existing few-shot learning approaches mainly focus on single-label predictions. These methods can not work well for the ACD task since a sentence may contain multiple aspect categories. Therefore, we propose a multi-label few-shot learning method based on the prototypical network. To alleviate the noise, we design two effective attention mechanisms. The support-set attention aims to extract better prototypes by removing irrelevant aspects. The query-set attention computes multiple prototype-specific representations for each query instance, which are then used to compute accurate distances with the corresponding prototypes. To achieve multi-label inference, we further learn a dynamic threshold per instance by a policy network. Extensive experimental results on three datasets demonstrate that the proposed method significantly outperforms strong baselines.

pdf bib
Efficient Mind-Map Generation via Sequence-to-Graph and Reinforced Graph Refinement
Mengting Hu | Honglei Guo | Shiwan Zhao | Hang Gao | Zhong Su
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

A mind-map is a diagram that represents the central concept and key ideas in a hierarchical way. Converting plain text into a mind-map will reveal its key semantic structure and be easier to understand. Given a document, the existing automatic mind-map generation method extracts the relationships of every sentence pair to generate the directed semantic graph for this document. The computation complexity increases exponentially with the length of the document. Moreover, it is difficult to capture the overall semantics. To deal with the above challenges, we propose an efficient mind-map generation network that converts a document into a graph via sequence-to-graph. To guarantee a meaningful mind-map, we design a graph refinement module to adjust the relation graph in a reinforcement learning manner. Extensive experimental results demonstrate that the proposed approach is more effective and efficient than the existing methods. The inference time is reduced by thousands of times compared with the existing methods. The case studies verify that the generated mind-maps better reveal the underlying semantic structures of the document.

2016

pdf bib
MDSENT at SemEval-2016 Task 4: A Supervised System for Message Polarity Classification
Hang Gao | Tim Oates
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)

2015

pdf bib
Ebiquity: Paraphrase and Semantic Similarity in Twitter using Skipgrams
Taneeya Satyapanich | Hang Gao | Tim Finin
Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015)