Hanming Wu


2023

pdf bib
A Holistic Approach to Reference-Free Evaluation of Machine Translation
Hanming Wu | Wenjuan Han | Hui Di | Yufeng Chen | Jinan Xu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Traditional machine translation evaluation relies on reference written by humans. While reference-free evaluation gets rid of the constraints of labor-intensive annotations, which can pivot easily to new domains and is more scalable. In this paper, we propose a reference-free evaluation approach that characterizes evaluation as two aspects: (1) fluency: how well the translated text conforms to normal human language usage; (2) faithfulness: how well the translated text reflects the source data. We further split the faithfulness into word-level and sentence-level. Extensive experiments spanning WMT18/19/21 Metrics segment-level daRR and MQM datasets demonstrate that our proposed reference-free approach, ReFreeEval, outperforms SOTA reference-fee metrics like YiSi-2.

2022

pdf bib
BJTU-Toshiba’s Submission to WMT22 Quality Estimation Shared Task
Hui Huang | Hui Di | Chunyou Li | Hanming Wu | Kazushige Ouchi | Yufeng Chen | Jian Liu | Jinan Xu
Proceedings of the Seventh Conference on Machine Translation (WMT)

This paper presents the BJTU-Toshiba joint submission for WMT 2022 quality estimation shared task. We only participate in Task 1 (quality prediction) of the shared task, focusing on the sentence-level MQM prediction. The techniques we experimented with include the integration of monolingual language models and the pre-finetuning of pre-trained representations. We tried two styles of pre-finetuning, namely Translation Language Modeling and Replaced Token Detection. We demonstrate the competitiveness of our system compared to the widely adopted XLM-RoBERTa baseline. Our system is also the top-ranking system on the Sentence-level MQM Prediction for the English-German language pairs.