Hannah Kirk


pdf bib
Proceedings of the First Workshop on Dynamic Adversarial Data Collection
Max Bartolo | Hannah Kirk | Pedro Rodriguez | Katerina Margatina | Tristan Thrush | Robin Jia | Pontus Stenetorp | Adina Williams | Douwe Kiela
Proceedings of the First Workshop on Dynamic Adversarial Data Collection

pdf bib
Looking for a Handsome Carpenter! Debiasing GPT-3 Job Advertisements
Conrad Borchers | Dalia Gala | Benjamin Gilburt | Eduard Oravkin | Wilfried Bounsi | Yuki M Asano | Hannah Kirk
Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP)

The growing capability and availability of generative language models has enabled a wide range of new downstream tasks. Academic research has identified, quantified and mitigated biases present in language models but is rarely tailored to downstream tasks where wider impact on individuals and society can be felt. In this work, we leverage one popular generative language model, GPT-3, with the goal of writing unbiased and realistic job advertisements. We first assess the bias and realism of zero-shot generated advertisements and compare them to real-world advertisements. We then evaluate prompt-engineering and fine-tuning as debiasing methods. We find that prompt-engineering with diversity-encouraging prompts gives no significant improvement to bias, nor realism. Conversely, fine-tuning, especially on unbiased real advertisements, can improve realism and reduce bias.

pdf bib
Is More Data Better? Re-thinking the Importance of Efficiency in Abusive Language Detection with Transformers-Based Active Learning
Hannah Kirk | Bertie Vidgen | Scott Hale
Proceedings of the Third Workshop on Threat, Aggression and Cyberbullying (TRAC 2022)

Annotating abusive language is expensive, logistically complex and creates a risk of psychological harm. However, most machine learning research has prioritized maximizing effectiveness (i.e., F1 or accuracy score) rather than data efficiency (i.e., minimizing the amount of data that is annotated). In this paper, we use simulated experiments over two datasets at varying percentages of abuse to demonstrate that transformers-based active learning is a promising approach to substantially raise efficiency whilst still maintaining high effectiveness, especially when abusive content is a smaller percentage of the dataset. This approach requires a fraction of labeled data to reach performance equivalent to training over the full dataset.

pdf bib
Hatemoji: A Test Suite and Adversarially-Generated Dataset for Benchmarking and Detecting Emoji-Based Hate
Hannah Kirk | Bertie Vidgen | Paul Rottger | Tristan Thrush | Scott Hale
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Detecting online hate is a complex task, and low-performing models have harmful consequences when used for sensitive applications such as content moderation. Emoji-based hate is an emerging challenge for automated detection. We present HatemojiCheck, a test suite of 3,930 short-form statements that allows us to evaluate performance on hateful language expressed with emoji. Using the test suite, we expose weaknesses in existing hate detection models. To address these weaknesses, we create the HatemojiBuild dataset using a human-and-model-in-the-loop approach. Models built with these 5,912 adversarial examples perform substantially better at detecting emoji-based hate, while retaining strong performance on text-only hate. Both HatemojiCheck and HatemojiBuild are made publicly available.

pdf bib
A Prompt Array Keeps the Bias Away: Debiasing Vision-Language Models with Adversarial Learning
Hugo Berg | Siobhan Hall | Yash Bhalgat | Hannah Kirk | Aleksandar Shtedritski | Max Bain
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Vision-language models can encode societal biases and stereotypes, but there are challenges to measuring and mitigating these multimodal harms due to lacking measurement robustness and feature degradation. To address these challenges, we investigate bias measures and apply ranking metrics for image-text representations. We then investigate debiasing methods and show that prepending learned embeddings to text queries that are jointly trained with adversarial debiasing and a contrastive loss, reduces various bias measures with minimal degradation to the image-text representation.


pdf bib
Memes in the Wild: Assessing the Generalizability of the Hateful Memes Challenge Dataset
Hannah Kirk | Yennie Jun | Paulius Rauba | Gal Wachtel | Ruining Li | Xingjian Bai | Noah Broestl | Martin Doff-Sotta | Aleksandar Shtedritski | Yuki M Asano
Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)

Hateful memes pose a unique challenge for current machine learning systems because their message is derived from both text- and visual-modalities. To this effect, Facebook released the Hateful Memes Challenge, a dataset of memes with pre-extracted text captions, but it is unclear whether these synthetic examples generalize to ‘memes in the wild’. In this paper, we collect hateful and non-hateful memes from Pinterest to evaluate out-of-sample performance on models pre-trained on the Facebook dataset. We find that ‘memes in the wild’ differ in two key aspects: 1) Captions must be extracted via OCR, injecting noise and diminishing performance of multimodal models, and 2) Memes are more diverse than ‘traditional memes’, including screenshots of conversations or text on a plain background. This paper thus serves as a reality-check for the current benchmark of hateful meme detection and its applicability for detecting real world hate.