Hanqi Jin


pdf bib
Document-Level Text Simplification: Dataset, Criteria and Baseline
Renliang Sun | Hanqi Jin | Xiaojun Wan
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Text simplification is a valuable technique. However, current research is limited to sentence simplification. In this paper, we define and investigate a new task of document-level text simplification, which aims to simplify a document consisting of multiple sentences. Based on Wikipedia dumps, we first construct a large-scale dataset named D-Wikipedia and perform analysis and human evaluation on it to show that the dataset is reliable. Then, we propose a new automatic evaluation metric called D-SARI that is more suitable for the document-level simplification task. Finally, we select several representative models as baseline models for this task and perform automatic evaluation and human evaluation. We analyze the results and point out the shortcomings of the baseline models.


pdf bib
AMR-To-Text Generation with Graph Transformer
Tianming Wang | Xiaojun Wan | Hanqi Jin
Transactions of the Association for Computational Linguistics, Volume 8

Abstract meaning representation (AMR)-to-text generation is the challenging task of generating natural language texts from AMR graphs, where nodes represent concepts and edges denote relations. The current state-of-the-art methods use graph-to-sequence models; however, they still cannot significantly outperform the previous sequence-to-sequence models or statistical approaches. In this paper, we propose a novel graph-to-sequence model (Graph Transformer) to address this task. The model directly encodes the AMR graphs and learns the node representations. A pairwise interaction function is used for computing the semantic relations between the concepts. Moreover, attention mechanisms are used for aggregating the information from the incoming and outgoing neighbors, which help the model to capture the semantic information effectively. Our model outperforms the state-of-the-art neural approach by 1.5 BLEU points on LDC2015E86 and 4.8 BLEU points on LDC2017T10 and achieves new state-of-the-art performances.

pdf bib
Multi-Granularity Interaction Network for Extractive and Abstractive Multi-Document Summarization
Hanqi Jin | Tianming Wang | Xiaojun Wan
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In this paper, we propose a multi-granularity interaction network for extractive and abstractive multi-document summarization, which jointly learn semantic representations for words, sentences, and documents. The word representations are used to generate an abstractive summary while the sentence representations are used to produce an extractive summary. We employ attention mechanisms to interact between different granularity of semantic representations, which helps to capture multi-granularity key information and improves the performance of both abstractive and extractive summarization. Experiment results show that our proposed model substantially outperforms all strong baseline methods and achieves the best results on the Multi-News dataset.

pdf bib
Abstractive Multi-Document Summarization via Joint Learning with Single-Document Summarization
Hanqi Jin | Xiaojun Wan
Findings of the Association for Computational Linguistics: EMNLP 2020

Single-document and multi-document summarizations are very closely related in both task definition and solution method. In this work, we propose to improve neural abstractive multi-document summarization by jointly learning an abstractive single-document summarizer. We build a unified model for single-document and multi-document summarizations by fully sharing the encoder and decoder and utilizing a decoding controller to aggregate the decoder’s outputs for multiple input documents. We evaluate our model on two multi-document summarization datasets: Multi-News and DUC-04. Experimental results show the efficacy of our approach, and it can substantially outperform several strong baselines. We also verify the helpfulness of single-document summarization to abstractive multi-document summarization task.