Hanqi Yan


pdf bib
Position Bias Mitigation: A Knowledge-Aware Graph Model for Emotion Cause Extraction
Hanqi Yan | Lin Gui | Gabriele Pergola | Yulan He
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

The Emotion Cause Extraction (ECE) task aims to identify clauses which contain emotion-evoking information for a particular emotion expressed in text. We observe that a widely-used ECE dataset exhibits a bias that the majority of annotated cause clauses are either directly before their associated emotion clauses or are the emotion clauses themselves. Existing models for ECE tend to explore such relative position information and suffer from the dataset bias. To investigate the degree of reliance of existing ECE models on clause relative positions, we propose a novel strategy to generate adversarial examples in which the relative position information is no longer the indicative feature of cause clauses. We test the performance of existing models on such adversarial examples and observe a significant performance drop. To address the dataset bias, we propose a novel graph-based method to explicitly model the emotion triggering paths by leveraging the commonsense knowledge to enhance the semantic dependencies between a candidate clause and an emotion clause. Experimental results show that our proposed approach performs on par with the existing state-of-the-art methods on the original ECE dataset, and is more robust against adversarial attacks compared to existing models.


pdf bib
LexicalAT: Lexical-Based Adversarial Reinforcement Training for Robust Sentiment Classification
Jingjing Xu | Liang Zhao | Hanqi Yan | Qi Zeng | Yun Liang | Xu Sun
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Recent work has shown that current text classification models are fragile and sensitive to simple perturbations. In this work, we propose a novel adversarial training approach, LexicalAT, to improve the robustness of current classification models. The proposed approach consists of a generator and a classifier. The generator learns to generate examples to attack the classifier while the classifier learns to defend these attacks. Considering the diversity of attacks, the generator uses a large-scale lexical knowledge base, WordNet, to generate attacking examples by replacing some words in training examples with their synonyms (e.g., sad and unhappy), neighbor words (e.g., fox and wolf), or super-superior words (e.g., chair and armchair). Due to the discrete generation step in the generator, we use policy gradient, a reinforcement learning approach, to train the two modules. Experiments show LexicalAT outperforms strong baselines and reduces test errors on various neural networks, including CNN, RNN, and BERT.