Hanqing Zhang
2024
Controllable Text Generation with Residual Memory Transformer
Hanqing Zhang
|
Si Sun
|
Haiming Wu
|
Dawei Song
Findings of the Association for Computational Linguistics: ACL 2024
Large-scale Causal Language Models (CLMs), e.g., GPT3 and ChatGPT, have brought great success in text generation. However, it is still an open challenge to effectively control the generation process of a CLM while balancing the flexibility, control granularity, and generation efficiency. In this paper, we provide a new alternative for controllable text generation (CTG), by designing a non-intrusive, lightweight control plugin, namely Residual Memory Transformer (RMT), to accompany the generation of CLM at arbitrary time steps. With an encoder-decoder setup, RMT can accept any types of control conditions and cooperate with the base CLM through a residual learning paradigm, to achieve a more flexible, general, and efficient CTG. Extensive experiments are carried out on various control tasks, in the form of both automatic and human evaluations. The results demonstrate the superiority of RMT over a wide range of state-of-the-art CTG approaches. The code implementation of our work is available at: https://github.com/Residual_Memory_Transformer.
Bi-DCSpell: A Bi-directional Detector-Corrector Interactive Framework for Chinese Spelling Check
Haiming Wu
|
Hanqing Zhang
|
Richeng Xuan
|
Dawei Song
Findings of the Association for Computational Linguistics: EMNLP 2024
Chinese Spelling Check (CSC) aims to detect and correct potentially misspelled characters in Chinese sentences. Naturally, it involves the detection and correction subtasks, which interact with each other dynamically. Such interactions are bi-directional, i.e., the detection result would help reduce the risk of over-correction and under-correction while the knowledge learnt from correction would help prevent false detection. Current CSC approaches are of two types: correction-only or single-directional detection-to-correction interactive frameworks. Nonetheless, they overlook the bi-directional interactions between detection and correction. This paper aims to fill the gap by proposing a Bi-directional Detector-Corrector framework for CSC (Bi-DCSpell). Notably, Bi-DCSpell contains separate detection and correction encoders, followed by a novel interactive learning module facilitating bi-directional feature interactions between detection and correction to improve each other’s representation learning. Extensive experimental results demonstrate a robust correction performance of Bi-DCSpell on widely used benchmarking datasets while possessing a satisfactory detection ability.
2022
DisCup: Discriminator Cooperative Unlikelihood Prompt-tuning for Controllable Text Generation
Hanqing Zhang
|
Dawei Song
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Prompt learning with immensely large Casual Language Models (CLMs) has been shown promising for attribute-controllable text generation (CTG). However, vanilla prompt tuning tends to imitate training corpus characteristics beyond the control attributes, resulting in a poor generalization ability. Moreover, it is less able to capture the relationship between different attributes, further limiting the control performance. In this paper, we propose a new CTG approach, namely DisCup, which incorporates the attribute knowledge of discriminator to optimize the control-prompts, steering a frozen CLM to produce attribute-specific texts. Specifically, the frozen CLM model, capable of producing multitudinous texts, is first used to generate the next-token candidates based on the context, so as to ensure the diversity of tokens to be predicted. Then, we leverage an attribute-discriminator to select desired/undesired tokens from those candidates, providing the inter-attribute knowledge. Finally, we bridge the above two traits by an unlikelihood objective for prompt-tuning. Extensive experimental results show that DisCup can achieve a new state-of-the-art control performance while maintaining an efficient and high-quality text generation, only relying on around 10 virtual tokens.