Hany Awadalla
2023
Dissecting In-Context Learning of Translations in GPT-3
Vikas Raunak
|
Arul Menezes
|
Hany Awadalla
Findings of the Association for Computational Linguistics: EMNLP 2023
Most of the recent work in leveraging Large Language Models (LLMs) such as GPT-3 for Machine Translation (MT) has focused on selecting the few-shot samples for prompting. In this work, we try to better understand the role of demonstration attributes for the in-context learning of translations through perturbations of high-quality, in-domain demonstrations. We find that asymmetric perturbation of the source-target mappings yield vastly different results. We show that the perturbation of the source side has surprisingly little impact, while target perturbation can drastically reduce translation quality, suggesting that it is the output text distribution that provides the most important learning signal during in-context learning of translations. We propose a method named Zero-Shot-Context to add this signal automatically in Zero-Shot prompting. We demonstrate that it improves upon the zero-shot translation performance of GPT-3, even making it competitive with few-shot prompted translations.
Leveraging GPT-4 for Automatic Translation Post-Editing
Vikas Raunak
|
Amr Sharaf
|
Yiren Wang
|
Hany Awadalla
|
Arul Menezes
Findings of the Association for Computational Linguistics: EMNLP 2023
While Neural Machine Translation (NMT) represents the leading approach to Machine Translation (MT), the outputs of NMT models still require translation post-editing to rectify errors and enhance quality under critical settings. In this work, we formalize the task of direct translation post-editing with Large Language Models (LLMs) and explore the use of GPT-4 to automatically post-edit NMT outputs across several language pairs. Our results demonstrate that GPT-4 is adept at translation post-editing, producing meaningful and trustworthy edits to translations that help improve its general quality as well as remove different classes of major errors in translations. In particular, human evaluations on assessing edit trustworthiness show that GPT-4 exhibits a large improvement over the prior state-of-the-art LLM. Notably, we improve upon state-of-the-art performance on WMT-22 English-Chinese, English-German, Chinese-English and German-English language pairs using GPT-4 based post-editing, as evaluated by state-of-the-art MT quality metrics. However, we also show that GPT-4 could produce hallucinated edits, thereby urging caution in its use as an expert translation post-editor.