Hanzi Xu


2024

pdf bib
X-Shot: A Unified System to Handle Frequent, Few-shot and Zero-shot Learning Simultaneously in Classification
Hanzi Xu | Muhao Chen | Lifu Huang | Slobodan Vucetic | Wenpeng Yin
Findings of the Association for Computational Linguistics ACL 2024

In recent years, few-shot and zero-shot learning, which learn to predict labels with limited annotated instances, have garnered significant attention. Traditional approaches often treat frequent-shot (freq-shot; labels with abundant instances), few-shot, and zero-shot learning as distinct challenges, optimizing systems for just one of these scenarios. Yet, in real-world settings, label occurrences vary greatly. Some of them might appear thousands of times, while others might only appear sporadically or not at all. For practical deployment, it is crucial that a system can adapt to any label occurrence. We introduce a novel classification challenge: **X-shot**, reflecting a real-world context where freq-shot, few-shot, and zero-shot labels co-occur without predefined limits. Here, **X** can span from 0 to positive infinity. The crux of **X-shot** centers on open-domain generalization and devising a system versatile enough to manage various label scenarios. To solve **X-shot**, we propose **BinBin** (**B**inary **IN**ference **B**ased on **IN**struction following) that leverages the Indirect Supervision from a large collection of NLP tasks via instruction following, bolstered by Weak Supervision provided by large language models. **BinBin** surpasses previous state-of-the-art techniques on three benchmark datasets across multiple domains. To our knowledge, this is the first work addressing **X-shot** learning, where **X** remains variable.

2023

pdf bib
Robustness of Learning from Task Instructions
Jiasheng Gu | Hongyu Zhao | Hanzi Xu | Liangyu Nie | Hongyuan Mei | Wenpeng Yin
Findings of the Association for Computational Linguistics: ACL 2023

Traditional supervised learning mostly works on individual tasks and requires training on a large set of task-specific examples. This paradigm seriously hinders the development of task generalization since preparing a task-specific example set is costly. To build a system that can quickly and easily generalize to new tasks, task instructions have been adopted as an emerging trend of supervision recently. These instructions give the model the definition of the task and allow the model to output the appropriate answer based on the instructions and inputs. However, task instructions are often expressed in different forms, which can be interpreted from two threads: first, some instructions are short sentences and are pretrained language model (PLM) oriented, such as prompts, while other instructions are paragraphs and are human-oriented, such as those in Amazon MTurk; second, different end-users very likely explain the same task with instructions of different textual expressions. A robust system for task generalization should be able to handle any new tasks regardless of the variability of instructions. However, the system robustness in dealing with instruction-driven task generalization is still unexplored. This work investigates the system robustness when the instructions of new tasks are (i) manipulated, (ii) paraphrased, or (iii) from different levels of conciseness. To our knowledge, this is the first work that systematically studies how robust a PLM is when it is supervised by instructions with different factors of variability.

2022

pdf bib
OpenStance: Real-world Zero-shot Stance Detection
Hanzi Xu | Slobodan Vucetic | Wenpeng Yin
Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)

Prior studies of zero-shot stance detection identify the attitude of texts towards unseen topics occurring in the same document corpus. Such task formulation has three limitations: (i) Single domain/dataset. A system is optimized on a particular dataset from a single domain; therefore, the resulting system cannot work well on other datasets; (ii) the model is evaluated on a limited number of unseen topics; (iii) it is assumed that part of the topics has rich annotations, which might be impossible in real-world applications. These drawbacks will lead to an impractical stance detection system that fails to generalize to open domains and open-form topics. This work defines OpenStance: open-domain zero-shot stance detection, aiming to handle stance detection in an open world with neither domain constraints nor topic-specific annotations. The key challenge of OpenStance lies in open-domain generalization: learning a system with fully unspecific supervision but capable of generalizing to any dataset. To solve OpenStance, we propose to combine indirect supervision, from textual entailment datasets, and weak supervision, from data generated automatically by pre-trained Language Models. Our single system, without any topic-specific supervision, outperforms the supervised method on three popular datasets. To our knowledge, this is the first work that studies stance detection under the open-domain zero-shot setting. All data and code will be publicly released.