Haobo Wang


2023

pdf bib
Revisiting the Knowledge Injection Frameworks
Peng Fu | Yiming Zhang | Haobo Wang | Weikang Qiu | Junbo Zhao
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

In recent years, large language models (LLMs), such as GPTs, have attained great impact worldwide. However, how to adapt these LLMs to better suit the vertical domain-specific tasks by utilizing external knowledge remains not completely solved. Indeed, there have emerged a few works on this line where most of them rely on an alignment heuristic that is built to inject the corresponding knowledge tuple into the associated text sample. However, despite the promise, we identify a pivotal problem in this work ubiquitously. Simply put, we find that injecting unaligned (i.e., random) knowledge tuple into the LLMs achieves comparable (and sometimes better) results than the aligned knowledge being injected. We therefore take a thorough investigation of this frustrating finding on a variety of related prior work and further provide a chain of potential interpretations for the phenomenon. Based on all that, we offer a simple remediated technique. Briefly, the core of this technique roots in an ideological emphasis on the pruning and purification of the external knowledge base to be injected into LLMs. At last, we show that by integrating this technique into most (if not all) knowledge injection frameworks and recent LLMs, it manages to overcome the aforementioned sanity problem and further pushes the boundary of the performance of the domain-adaptive LLMs.

pdf bib
FreeAL: Towards Human-Free Active Learning in the Era of Large Language Models
Ruixuan Xiao | Yiwen Dong | Junbo Zhao | Runze Wu | Minmin Lin | Gang Chen | Haobo Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Collecting high-quality labeled data for model training is notoriously time-consuming and labor-intensive for various NLP tasks. While copious solutions, such as active learning for small language models (SLMs) and prevalent in-context learning in the era of large language models (LLMs), have been proposed and alleviate the labeling burden to some extent, their performances are still subject to human intervention. It is still underexplored how to reduce the annotation cost in the LLMs era. To bridge this, we revolutionize traditional active learning and propose an innovative collaborative learning framework FreeAL to interactively distill and filter the task-specific knowledge from LLMs. During collaborative training, an LLM serves as an active annotator inculcating its coarse-grained knowledge, while a downstream SLM is incurred as a student to filter out high-quality in-context samples to feedback LLM for the subsequent label refinery. Extensive experiments on eight benchmark datasets demonstrate that FreeAL largely enhances the zero-shot performances for both SLM and LLM without any human supervision.