Haobo Wang


2024

pdf bib
Data Contamination Calibration for Black-box LLMs
Wentao Ye | Jiaqi Hu | Liyao Li | Haobo Wang | Gang Chen | Junbo Zhao
Findings of the Association for Computational Linguistics ACL 2024

The rapid advancements of Large Language Models (LLMs) tightly associate with the expansion of the training data size. However, the unchecked ultra-large-scale training sets introduce a series of potential risks like data contamination, i.e. the benchmark data is used for training. In this work, we propose a holistic method named Polarized Augment Calibration (PAC) along with a new to-be-released dataset to detect the contaminated data and diminish the contamination effect. PAC extends the popular MIA (Membership Inference Attack) — from machine learning community — by forming a more global target at detecting training data to Clarify invisible training data. As a pioneering work, PAC is very much plug-and-play that can be integrated with most (if not all) current white- and black-box LLMs. By extensive experiments, PAC outperforms existing methods by at least 4.5%, towards data contamination detection on more 4 dataset formats, with more than 10 base LLMs. Besides, our application in real-world scenarios highlights the prominent presence of contamination and related issues.

pdf bib
RECOST: External Knowledge Guided Data-efficient Instruction Tuning
Qi Zhang | Yiming Zhang | Haobo Wang | Junbo Zhao
Findings of the Association for Computational Linguistics ACL 2024

In the current landscape of large language models (LLMs), the process of instruction tuning serves as an essential step. Considering the high computing power overhead, data-efficient instruction tuning was proposed to reduce the training data size in this process, aiming at selecting high-quality instructional data. Nevertheless, we argue that most current data-efficient instruction-tuning methods are highly dependent on the quality of the original instruction-tuning dataset. When it comes to datasets synthesized by LLMs, a common scenario in this field, dirty samples will even be selected with a higher probability than other samples. To address these challenges, we utilized external knowledge (relevant examples or paragraphs) to evaluate those samples synthesized by LLMs with an in-context-based relative predictive entropy. Based on the new metric, we proposed a framework, dubbed as RECOST, which integrates external-knowledge-base re-ranking and diversity-consistent sampling into a single pipeline. Through extensive experiments on several synthetic datasets (Alpaca and Alpaca-gpt4), we demonstrate the effectiveness of our method and achieve even better results with only 1% of the full dataset.

pdf bib
On LLMs-Driven Synthetic Data Generation, Curation, and Evaluation: A Survey
Lin Long | Rui Wang | Ruixuan Xiao | Junbo Zhao | Xiao Ding | Gang Chen | Haobo Wang
Findings of the Association for Computational Linguistics ACL 2024

Within the evolving landscape of deep learning, the dilemma of data quantity and quality has been a long-standing problem. The recent advent of Large Language Models (LLMs) offers a data-centric solution to alleviate the limitations of real-world data with synthetic data generation. However, current investigations into this field lack a unified framework and mostly stay on the surface. Therefore, this paper provides an organization of relevant studies based on a generic workflow of synthetic data generation. By doing so, we highlight the gaps within existing research and outline prospective avenues for future study. This work aims to shepherd the academic and industrial communities towards deeper, more methodical inquiries into the capabilities and applications of LLMs-driven synthetic data generation.

pdf bib
Fast Adaptation via Prompted Data: An Efficient Cross-Domain Fine-tuning Method for Large Language Models
Yiming Zhang | Hantao Yang | Haobo Wang | Jake Zhao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Large language models (LLMs) have achieved great success in a variety of natural language understanding tasks. However, domain discrepancies between the downstream task and the pre-training corpora may have hurdled LLMs to excel further in the vertical applications. Contrary to prior computational-heavy methods, we propose a lightweight solution to further bridge the gap in applying LLMs to diverse downstream tasks — a Fast Adaptation method for LLMs via Prompted Data, in short FAvPD. Notably, with FAvPD, we establish an additional adaptive tuning procedure, wherein we integrate downstream text corpora, gold labels as well as external knowledge sources and then envelop them into a form of highly controllable prompt. As a simple, easy-to-use, and versatile solution, FAvPD lies in the intersection of regimes like knowledge-augmented LLMs, fine-tuning, and adaptation techniques. With extensive experiments, we prove that FAvPD excels in both performance efficacy and training efficiency over related prior works. FAvPD is publicly available at https://github.com/Hyatio/FAvPD.

pdf bib
Learning Geometry-Aware Representations for New Intent Discovery
Kai Tang | Junbo Zhao | Xiao Ding | Runze Wu | Lei Feng | Gang Chen | Haobo Wang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

New intent discovery (NID) is an important problem for deploying practical dialogue systems, which trains intent classifiers on a semi-supervised corpus where unlabeled user utterances contain both known and novel intents. Most existing NID algorithms place hope on the sample similarity to cluster unlabeled corpus to known or new samples. Lacking supervision on new intents, we experimentally find the intent classifier fails to fully distinguish new intents since they tend to assemble into intertwined centers.To address this problem, we propose a novel GeoID framework that learns geometry-aware representations to maximally separate all intents. Specifically, we are motivated by the recent findings on Neural Collapse (NC) in classification tasks to derive optimal intent center structure. Meanwhile, we devise a dual pseudo-labeling strategy based on optimal transport assignments and semi-supervised clustering, ensuring proper utterances-to-center arrangement.Extensive results show that our GeoID method establishes a new state-of-the-art performance, achieving a +3.49% average accuracy improvement on three standardized benchmarking datasets. We also verify its usefulness in assisting large language models for improved in-context performance.

2023

pdf bib
Revisiting the Knowledge Injection Frameworks
Peng Fu | Yiming Zhang | Haobo Wang | Weikang Qiu | Junbo Zhao
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

In recent years, large language models (LLMs), such as GPTs, have attained great impact worldwide. However, how to adapt these LLMs to better suit the vertical domain-specific tasks by utilizing external knowledge remains not completely solved. Indeed, there have emerged a few works on this line where most of them rely on an alignment heuristic that is built to inject the corresponding knowledge tuple into the associated text sample. However, despite the promise, we identify a pivotal problem in this work ubiquitously. Simply put, we find that injecting unaligned (i.e., random) knowledge tuple into the LLMs achieves comparable (and sometimes better) results than the aligned knowledge being injected. We therefore take a thorough investigation of this frustrating finding on a variety of related prior work and further provide a chain of potential interpretations for the phenomenon. Based on all that, we offer a simple remediated technique. Briefly, the core of this technique roots in an ideological emphasis on the pruning and purification of the external knowledge base to be injected into LLMs. At last, we show that by integrating this technique into most (if not all) knowledge injection frameworks and recent LLMs, it manages to overcome the aforementioned sanity problem and further pushes the boundary of the performance of the domain-adaptive LLMs.

pdf bib
FreeAL: Towards Human-Free Active Learning in the Era of Large Language Models
Ruixuan Xiao | Yiwen Dong | Junbo Zhao | Runze Wu | Minmin Lin | Gang Chen | Haobo Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Collecting high-quality labeled data for model training is notoriously time-consuming and labor-intensive for various NLP tasks. While copious solutions, such as active learning for small language models (SLMs) and prevalent in-context learning in the era of large language models (LLMs), have been proposed and alleviate the labeling burden to some extent, their performances are still subject to human intervention. It is still underexplored how to reduce the annotation cost in the LLMs era. To bridge this, we revolutionize traditional active learning and propose an innovative collaborative learning framework FreeAL to interactively distill and filter the task-specific knowledge from LLMs. During collaborative training, an LLM serves as an active annotator inculcating its coarse-grained knowledge, while a downstream SLM is incurred as a student to filter out high-quality in-context samples to feedback LLM for the subsequent label refinery. Extensive experiments on eight benchmark datasets demonstrate that FreeAL largely enhances the zero-shot performances for both SLM and LLM without any human supervision.