Haojing Huang


2024

pdf bib
Towards Real-World Writing Assistance: A Chinese Character Checking Benchmark with Faked and Misspelled Characters
Yinghui Li | Zishan Xu | Shaoshen Chen | Haojing Huang | Yangning Li | Shirong Ma | Yong Jiang | Zhongli Li | Qingyu Zhou | Hai-Tao Zheng | Ying Shen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Writing assistance aims to improve the correctness and quality of input texts, with character checking being crucial in detecting and correcting wrong characters. In the real world where handwriting occupies the vast majority, characters that humans get wrong include faked characters (i.e., untrue characters created due to writing errors) and misspelled characters (i.e., true characters used incorrectly due to spelling errors). However, existing datasets and related studies only focus on misspelled characters that can be represented by computer text encoding systems, thereby ignoring faked characters which are more common and difficult. To break through this dilemma, we present Visual-C3, a human-annotated Visual Chinese Character Checking dataset with faked and misspelled Chinese characters. To the best of our knowledge, Visual-C3 is the first real-world visual and the largest human-crafted dataset for the Chinese character checking scenario. Additionally, we also propose and evaluate novel baseline methods on Visual-C3. Extensive empirical results and analyses show that Visual-C3 is high-quality yet challenging. As the first study focusing on Chinese faked characters, the dataset and the baseline methods are publicly available at https://github.com/THUKElab/Visual-C3.

2023

pdf bib
A Frustratingly Easy Plug-and-Play Detection-and-Reasoning Module for Chinese Spelling Check
Haojing Huang | Jingheng Ye | Qingyu Zhou | Yinghui Li | Yangning Li | Feng Zhou | Hai-Tao Zheng
Findings of the Association for Computational Linguistics: EMNLP 2023

In recent years, Chinese Spelling Check (CSC) has been greatly improved by designing task-specific pre-training methods or introducing auxiliary tasks, which mostly solve this task in an end-to-end fashion. In this paper, we propose to decompose the CSC workflow into detection, reasoning, and searching subtasks so that the rich external knowledge about the Chinese language can be leveraged more directly and efficiently. Specifically, we design a plug-and-play detection-and-reasoning module that is compatible with existing SOTA non-autoregressive CSC models to further boost their performance. We find that the detection-and-reasoning module trained for one model can also benefit other models. We also study the primary interpretability provided by the task decomposition. Extensive experiments and detailed analyses demonstrate the effectiveness and competitiveness of the proposed module.