Haoli Bai


2023

pdf bib
Structured Pruning for Efficient Generative Pre-trained Language Models
Chaofan Tao | Lu Hou | Haoli Bai | Jiansheng Wei | Xin Jiang | Qun Liu | Ping Luo | Ngai Wong
Findings of the Association for Computational Linguistics: ACL 2023

The increasing sizes of large generative Pre-trained Language Models (PLMs) hinder their deploymentin real-world applications. To obtain efficient PLMs, previous studies mostly focus on pruning the attention heads and feed-forward networks (FFNs) of the Transformer. Nevertheless, we find that in generative PLMs, the hidden dimension shared by many other modules (e.g., embedding layer and layer normalization) contains persistent outliers regardless of the network input. This study comprehensively investigates the structured pruning of generative PLMs with all the above compressible components. To identify redundant network structures, we assign learnable masks over compressible components followed by sparse training. Various sizes of PLMs can be flexibly extracted via different thresholds, and are then task-specifically fine-tuned for further improvement. Extensive experiments on language modeling, summarization and machine translation validate the effectiveness of the proposed method. For example, the pruned BART brings 1.51x/6.96x inference speedup on GPU/CPU with 67% size reduction, and can be further combined with quantization for more than 25× compression.

pdf bib
Wukong-Reader: Multi-modal Pre-training for Fine-grained Visual Document Understanding
Haoli Bai | Zhiguang Liu | Xiaojun Meng | Li Wentao | Shuang Liu | Yifeng Luo | Nian Xie | Rongfu Zheng | Liangwei Wang | Lu Hou | Jiansheng Wei | Xin Jiang | Qun Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Unsupervised pre-training on millions of digital-born or scanned documents has shown promising advances in visual document understanding (VDU). While various vision-language pre-training objectives are studied in existing solutions, the document textline, as an intrinsic granularity in VDU, has seldom been explored so far. A document textline usually contains words that are spatially and semantically correlated, which can be easily obtained from OCR engines. In this paper, we propose Wukong-Reader, trained with new pre-training objectives to leverage the structural knowledge nested in document textlines. We introduce textline-region contrastive learning to achieve fine-grained alignment between the visual regions and texts of document textlines. Furthermore, masked region modeling and textline-grid matching are also designed to enhance the visual and layout representations of textlines. Experiments show that Wukong-Reader brings superior performance on various VDU tasks in both English and Chinese. The fine-grained alignment over textlines also empowers Wukong-Reader with promising localization ability.

2021

pdf bib
BinaryBERT: Pushing the Limit of BERT Quantization
Haoli Bai | Wei Zhang | Lu Hou | Lifeng Shang | Jin Jin | Xin Jiang | Qun Liu | Michael Lyu | Irwin King
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

The rapid development of large pre-trained language models has greatly increased the demand for model compression techniques, among which quantization is a popular solution. In this paper, we propose BinaryBERT, which pushes BERT quantization to the limit by weight binarization. We find that a binary BERT is hard to be trained directly than a ternary counterpart due to its complex and irregular loss landscape. Therefore, we propose ternary weight splitting, which initializes BinaryBERT by equivalently splitting from a half-sized ternary network. The binary model thus inherits the good performance of the ternary one, and can be further enhanced by fine-tuning the new architecture after splitting. Empirical results show that our BinaryBERT has only a slight performance drop compared with the full-precision model while being 24x smaller, achieving the state-of-the-art compression results on the GLUE and SQuAD benchmarks. Code will be released.