2024
pdf
bib
abs
FuxiTranyu: A Multilingual Large Language Model Trained with Balanced Data
Haoran Sun
|
Renren Jin
|
Shaoyang Xu
|
Leiyu Pan
|
Supryadi
|
Menglong Cui
|
Jiangcun Du
|
Yikun Lei
|
Lei Yang
|
Ling Shi
|
Juesi Xiao
|
Shaolin Zhu
|
Deyi Xiong
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track
Large language models (LLMs) have demonstrated prowess in a wide range of tasks. However, many LLMs exhibit significant performance discrepancies between high- and low-resource languages. To mitigate this challenge, we present FuxiTranyu, an open-source multilingual LLM, which is designed to satisfy the need of the research community for balanced and high-performing multilingual capabilities. The base model, FuxiTranyu-8B, features 8 billion parameters and is trained from scratch on meticulously balanced multilingual data that contains 600 billion tokens covering 43 natural languages and 16 programming languages. We also develop two instruction-tuned models: FuxiTranyu-8B-SFT which is fine-tuned on a diverse multilingual instruction dataset, and FuxiTranyu-8B-DPO which is further refined with DPO on a preference dataset for enhanced alignment ability. Extensive experiments on a wide range of multilingual benchmarks demonstrate the competitive performance of FuxiTranyu against existing multilingual LLMs, e.g., BLOOM-7B, PolyLM-13B, and Mistral-7B-Instruct. Both neuron and representation interpretability analyses reveal that FuxiTranyu achieves consistent multilingual representations across languages. To promote further research into multilingual LLMs, we release both the base and instruction-tuned FuxiTranyu models together with 58 pre-training checkpoints at HuggingFace and Github.
2023
pdf
bib
abs
CKDST: Comprehensively and Effectively Distill Knowledge from Machine Translation to End-to-End Speech Translation
Yikun Lei
|
Zhengshan Xue
|
Xiaohu Zhao
|
Haoran Sun
|
Shaolin Zhu
|
Xiaodong Lin
|
Deyi Xiong
Findings of the Association for Computational Linguistics: ACL 2023
Distilling knowledge from a high-resource task, e.g., machine translation, is an effective way to alleviate the data scarcity problem of end-to-end speech translation. However, previous works simply use the classical knowledge distillation that does not allow for adequate transfer of knowledge from machine translation. In this paper, we propose a comprehensive knowledge distillation framework for speech translation, CKDST, which is capable of comprehensively and effectively distilling knowledge from machine translation to speech translation from two perspectives: cross-modal contrastive representation distillation and simultaneous decoupled knowledge distillation. In the former, we leverage a contrastive learning objective to optmize the mutual information between speech and text representations for representation distillation in the encoder. In the later, we decouple the non-target class knowledge from target class knowledge for logits distillation in the decoder. Experiments on the MuST-C benchmark dataset demonstrate that our CKDST substantially improves the baseline by 1.2 BLEU on average in all translation directions, and outperforms previous state-of-the-art end-to-end and cascaded speech translation models.
pdf
bib
abs
CCSRD: Content-Centric Speech Representation Disentanglement Learning for End-to-End Speech Translation
Xiaohu Zhao
|
Haoran Sun
|
Yikun Lei
|
Shaolin Zhu
|
Deyi Xiong
Findings of the Association for Computational Linguistics: EMNLP 2023
Deep neural networks have demonstrated their capacity in extracting features from speech inputs. However, these features may include non-linguistic speech factors such as timbre and speaker identity, which are not directly related to translation. In this paper, we propose a content-centric speech representation disentanglement learning framework for speech translation, CCSRD, which decomposes speech representations into content representations and non-linguistic representations via representation disentanglement learning. CCSRD consists of a content encoder that encodes linguistic content information from the speech input, a non-content encoder that models non-linguistic speech features, and a disentanglement module that learns disentangled representations with a cyclic reconstructor, feature reconstructor and speaker classifier trained in a multi-task learning way. Experiments on the MuST-C benchmark dataset demonstrate that CCSRD achieves an average improvement of +0.9 BLEU in two settings across five translation directions over the baseline, outperforming state-of-the-art end-to-end speech translation models and cascaded models.
pdf
bib
abs
Towards a Deep Understanding of Multilingual End-to-End Speech Translation
Haoran Sun
|
Xiaohu Zhao
|
Yikun Lei
|
Shaolin Zhu
|
Deyi Xiong
Findings of the Association for Computational Linguistics: EMNLP 2023
In this paper, we employ Singular Value Canonical Correlation Analysis (SVCCA) to analyze representations learnt in a multilingual end-to-end speech translation model trained over 22 languages. SVCCA enables us to estimate representational similarity across languages and layers, enhancing our understanding of the functionality of multilingual speech translation and its potential connection to multilingual neural machine translation. The multilingual speech translation model is trained on the CoVoST 2 dataset in all possible directions, and we utilize LASER to extract parallel bitext data for SVCCA analysis. We derive three major findings from our analysis: (I) Linguistic similarity loses its efficacy in multilingual speech translation when the training data for a specific language is limited. (II) Enhanced encoder representations and well-aligned audio-text data significantly improve translation quality, surpassing the bilingual counterparts when the training data is not compromised. (III) The encoder representations of multilingual speech translation demonstrate superior performance in predicting phonetic features in linguistic typology prediction. With these findings, we propose that releasing the constraint of limited data for low-resource languages and subsequently combining them with linguistically related high-resource languages could offer a more effective approach for multilingual end-to-end speech translation.
2022
pdf
bib
abs
Language Branch Gated Multilingual Neural Machine Translation
Haoran Sun
|
Deyi Xiong
Proceedings of the 29th International Conference on Computational Linguistics
Knowledge transfer across languages is crucial for multilingual neural machine translation. In this paper, we propose language branch (LB) gated multilingual neural machine translation that encourages knowledge transfer within the same language branch with a LB-gated module that is integrated into both the encoder and decoder. The LB-gated module distinguishes LB-specific parameters from global parameters shared by all languages and routes languages from the same LB to the corresponding LB-specific network. Comprehensive experiments on the OPUS-100 dataset show that the proposed approach substantially improves translation quality on both middle- and low-resource languages over previous methods. Further analysis demonstrates its ability in learning similarities between language branches.