Haowen Liang


pdf bib
A Closer Look at Few-Shot Out-of-Distribution Intent Detection
Li-Ming Zhan | Haowen Liang | Lu Fan | Xiao-Ming Wu | Albert Y.S. Lam
Proceedings of the 29th International Conference on Computational Linguistics

We consider few-shot out-of-distribution (OOD) intent detection, a practical and important problem for the development of task-oriented dialogue systems. Despite its importance, this problem is seldom studied in the literature, let alone examined in a systematic way. In this work, we take a closer look at this problem and identify key issues for research. In our pilot study, we reveal the reason why existing OOD intent detection methods are not adequate in dealing with this problem. Based on the observation, we propose a promising approach to tackle this problem based on latent representation generation and self-supervision. Comprehensive experiments on three real-world intent detection benchmark datasets demonstrate the high effectiveness of our proposed approach and its great potential in improving state-of-the-art methods for few-shot OOD intent detection.

pdf bib
Fine-tuning Pre-trained Language Models for Few-shot Intent Detection: Supervised Pre-training and Isotropization
Haode Zhang | Haowen Liang | Yuwei Zhang | Li-Ming Zhan | Xiao-Ming Wu | Xiaolei Lu | Albert Lam
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

It is challenging to train a good intent classifier for a task-oriented dialogue system with only a few annotations. Recent studies have shown that fine-tuning pre-trained language models with a small set of labeled utterances from public benchmarks in a supervised manner is extremely helpful. However, we find that supervised pre-training yields an anisotropic feature space, which may suppress the expressive power of the semantic representations. Inspired by recent research in isotropization, we propose to improve supervised pre-training by regularizing the feature space towards isotropy. We propose two regularizers based on contrastive learning and correlation matrix respectively, and demonstrate their effectiveness through extensive experiments. Our main finding is that it is promising to regularize supervised pre-training with isotropization to further improve the performance of few-shot intent detection. The source code can be found at https://github.com/fanolabs/isoIntentBert-main.


pdf bib
Out-of-Scope Intent Detection with Self-Supervision and Discriminative Training
Li-Ming Zhan | Haowen Liang | Bo Liu | Lu Fan | Xiao-Ming Wu | Albert Y.S. Lam
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Out-of-scope intent detection is of practical importance in task-oriented dialogue systems. Since the distribution of outlier utterances is arbitrary and unknown in the training stage, existing methods commonly rely on strong assumptions on data distribution such as mixture of Gaussians to make inference, resulting in either complex multi-step training procedures or hand-crafted rules such as confidence threshold selection for outlier detection. In this paper, we propose a simple yet effective method to train an out-of-scope intent classifier in a fully end-to-end manner by simulating the test scenario in training, which requires no assumption on data distribution and no additional post-processing or threshold setting. Specifically, we construct a set of pseudo outliers in the training stage, by generating synthetic outliers using inliner features via self-supervision and sampling out-of-scope sentences from easily available open-domain datasets. The pseudo outliers are used to train a discriminative classifier that can be directly applied to and generalize well on the test task. We evaluate our method extensively on four benchmark dialogue datasets and observe significant improvements over state-of-the-art approaches. Our code has been released at https://github.com/liam0949/DCLOOS.