Haoyi Qiu


2024

pdf bib
AMRFact: Enhancing Summarization Factuality Evaluation with AMR-Driven Negative Samples Generation
Haoyi Qiu | Kung-Hsiang Huang | Jingnong Qu | Nanyun Peng
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Ensuring factual consistency is crucial for natural language generation tasks, particularly in abstractive summarization, where preserving the integrity of information is paramount. Prior works on evaluating factual consistency of summarization often take the entailment-based approaches that first generate perturbed (factual inconsistent) summaries and then train a classifier on the generated data to detect the factually inconsistencies during testing time. However, previous approaches generating perturbed summaries are either of low coherence or lack error-type coverage. To address these issues, we propose AMRFact, a framework that generates perturbed summaries using Abstract Meaning Representations (AMRs). Our approach parses factually consistent summaries into AMR graphs and injects controlled factual inconsistencies to create negative examples, allowing for coherent factually inconsistent summaries to be generated with high error-type coverage. Additionally, we present a data selection module NegFilter based on natural language inference and BARTScore to ensure the quality of the generated negative samples. Experimental results demonstrate our approach significantly outperforms previous systems on the AggreFact-SOTA benchmark, showcasing its efficacy in evaluating factuality of abstractive summarization.

2023

pdf bib
Gender Biases in Automatic Evaluation Metrics for Image Captioning
Haoyi Qiu | Zi-Yi Dou | Tianlu Wang | Asli Celikyilmaz | Nanyun Peng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Model-based evaluation metrics (e.g., CLIPScore and GPTScore) have demonstrated decent correlations with human judgments in various language generation tasks. However, their impact on fairness remains largely unexplored. It is widely recognized that pretrained models can inadvertently encode societal biases, thus employing these models for evaluation purposes may inadvertently perpetuate and amplify biases. For example, an evaluation metric may favor the caption “a woman is calculating an account book” over “a man is calculating an account book,” even if the image only shows male accountants. In this paper, we conduct a systematic study of gender biases in model-based automatic evaluation metrics for image captioning tasks. We start by curating a dataset comprising profession, activity, and object concepts associated with stereotypical gender associations. Then, we demonstrate the negative consequences of using these biased metrics, including the inability to differentiate between biased and unbiased generations, as well as the propagation of biases to generation models through reinforcement learning. Finally, we present a simple and effective way to mitigate the metric bias without hurting the correlations with human judgments. Our dataset and framework lay the foundation for understanding the potential harm of model-based evaluation metrics, and facilitate future works to develop more inclusive evaluation metrics.