Haoyu Wang


pdf bib
RESIN-11: Schema-guided Event Prediction for 11 Newsworthy Scenarios
Xinya Du | Zixuan Zhang | Sha Li | Pengfei Yu | Hongwei Wang | Tuan Lai | Xudong Lin | Ziqi Wang | Iris Liu | Ben Zhou | Haoyang Wen | Manling Li | Darryl Hannan | Jie Lei | Hyounghun Kim | Rotem Dror | Haoyu Wang | Michael Regan | Qi Zeng | Qing Lyu | Charles Yu | Carl Edwards | Xiaomeng Jin | Yizhu Jiao | Ghazaleh Kazeminejad | Zhenhailong Wang | Chris Callison-Burch | Mohit Bansal | Carl Vondrick | Jiawei Han | Dan Roth | Shih-Fu Chang | Martha Palmer | Heng Ji
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: System Demonstrations

We introduce RESIN-11, a new schema-guided event extraction&prediction framework that can be applied to a large variety of newsworthy scenarios. The framework consists of two parts: (1) an open-domain end-to-end multimedia multilingual information extraction system with weak-supervision and zero-shot learningbased techniques. (2) schema matching and schema-guided event prediction based on our curated schema library. We build a demo website based on our dockerized system and schema library publicly available for installation (https://github.com/RESIN-KAIROS/RESIN-11). We also include a video demonstrating the system.

pdf bib
Capturing the Content of a Document through Complex Event Identification
Zheng Qi | Elior Sulem | Haoyu Wang | Xiaodong Yu | Dan Roth
Proceedings of the 11th Joint Conference on Lexical and Computational Semantics

Granular events, instantiated in a document by predicates, can usually be grouped into more general events, called complex events. Together, they capture the major content of the document. Recent work grouped granular events by defining event regions, filtering out sentences that are irrelevant to the main content. However, this approach assumes that a given complex event is always described in consecutive sentences, which does not always hold in practice. In this paper, we introduce the task of complex event identification. We address this task as a pipeline, first predicting whether two granular events mentioned in the text belong to the same complex event, independently of their position in the text, and then using this to cluster them into complex events. Due to the difficulty of predicting whether two granular events belong to the same complex event in isolation, we propose a context-augmented representation learning approach CONTEXTRL that adds additional context to better model the pairwise relation between granular events. We show that our approach outperforms strong baselines on the complex event identification task and further present a promising case study exploring the effectiveness of using complex events as input for document-level argument extraction.


pdf bib
Learning Constraints and Descriptive Segmentation for Subevent Detection
Haoyu Wang | Hongming Zhang | Muhao Chen | Dan Roth
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Event mentions in text correspond to real-world events of varying degrees of granularity. The task of subevent detection aims to resolve this granularity issue, recognizing the membership of multi-granular events in event complexes. Since knowing the span of descriptive contexts of event complexes helps infer the membership of events, we propose the task of event-based text segmentation (EventSeg) as an auxiliary task to improve the learning for subevent detection. To bridge the two tasks together, we propose an approach to learning and enforcing constraints that capture dependencies between subevent detection and EventSeg prediction, as well as guiding the model to make globally consistent inference. Specifically, we adopt Rectifier Networks for constraint learning and then convert the learned constraints to a regularization term in the loss function of the neural model. Experimental results show that the proposed method outperforms baseline methods by 2.3% and 2.5% on benchmark datasets for subevent detection, HiEve and IC, respectively, while achieving a decent performance on EventSeg prediction.

pdf bib
Zero-shot Label-Aware Event Trigger and Argument Classification
Hongming Zhang | Haoyu Wang | Dan Roth
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Knowledge-Guided Paraphrase Identification
Haoyu Wang | Fenglong Ma | Yaqing Wang | Jing Gao
Findings of the Association for Computational Linguistics: EMNLP 2021

Paraphrase identification (PI), a fundamental task in natural language processing, is to identify whether two sentences express the same or similar meaning, which is a binary classification problem. Recently, BERT-like pre-trained language models have been a popular choice for the frameworks of various PI models, but almost all existing methods consider general domain text. When these approaches are applied to a specific domain, existing models cannot make accurate predictions due to the lack of professional knowledge. In light of this challenge, we propose a novel framework, namely , which can leverage the external unstructured Wikipedia knowledge to accurately identify paraphrases. We propose to mine outline knowledge of concepts related to given sentences from Wikipedia via BM25 model. After retrieving related outline knowledge, makes predictions based on both the semantic information of two sentences and the outline knowledge. Besides, we propose a gating mechanism to aggregate the semantic information-based prediction and the knowledge-based prediction. Extensive experiments are conducted on two public datasets: PARADE (a computer science domain dataset) and clinicalSTS2019 (a biomedical domain dataset). The results show that the proposed outperforms state-of-the-art methods.

pdf bib
RESIN: A Dockerized Schema-Guided Cross-document Cross-lingual Cross-media Information Extraction and Event Tracking System
Haoyang Wen | Ying Lin | Tuan Lai | Xiaoman Pan | Sha Li | Xudong Lin | Ben Zhou | Manling Li | Haoyu Wang | Hongming Zhang | Xiaodong Yu | Alexander Dong | Zhenhailong Wang | Yi Fung | Piyush Mishra | Qing Lyu | Dídac Surís | Brian Chen | Susan Windisch Brown | Martha Palmer | Chris Callison-Burch | Carl Vondrick | Jiawei Han | Dan Roth | Shih-Fu Chang | Heng Ji
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations

We present a new information extraction system that can automatically construct temporal event graphs from a collection of news documents from multiple sources, multiple languages (English and Spanish for our experiment), and multiple data modalities (speech, text, image and video). The system advances state-of-the-art from two aspects: (1) extending from sentence-level event extraction to cross-document cross-lingual cross-media event extraction, coreference resolution and temporal event tracking; (2) using human curated event schema library to match and enhance the extraction output. We have made the dockerlized system publicly available for research purpose at GitHub, with a demo video.


pdf bib
What Are You Trying to Do? Semantic Typing of Event Processes
Muhao Chen | Hongming Zhang | Haoyu Wang | Dan Roth
Proceedings of the 24th Conference on Computational Natural Language Learning

This paper studies a new cognitively motivated semantic typing task,multi-axis event process typing, that, given anevent process, attempts to infer free-form typelabels describing (i) the type of action made bythe process and (ii) the type of object the pro-cess seeks to affect. This task is inspired bycomputational and cognitive studies of eventunderstanding, which suggest that understand-ing processes of events is often directed by rec-ognizing the goals, plans or intentions of theprotagonist(s). We develop a large dataset con-taining over 60k event processes, featuring ul-tra fine-grained typing on both the action andobject type axes with very large (10ˆ3∼10ˆ4)label vocabularies. We then propose a hybridlearning framework,P2GT, which addressesthe challenging typing problem with indirectsupervision from glosses1and a joint learning-to-rank framework. As our experiments indi-cate,P2GTsupports identifying the intent ofprocesses, as well as the fine semantic type ofthe affected object. It also demonstrates the ca-pability of handling few-shot cases, and stronggeneralizability on out-of-domain processes.

pdf bib
Joint Constrained Learning for Event-Event Relation Extraction
Haoyu Wang | Muhao Chen | Hongming Zhang | Dan Roth
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Understanding natural language involves recognizing how multiple event mentions structurally and temporally interact with each other. In this process, one can induce event complexes that organize multi-granular events with temporal order and membership relations interweaving among them. Due to the lack of jointly labeled data for these relational phenomena and the restriction on the structures they articulate, we propose a joint constrained learning framework for modeling event-event relations. Specifically, the framework enforces logical constraints within and across multiple temporal and subevent relations of events by converting these constraints into differentiable learning objectives. We show that our joint constrained learning approach effectively compensates for the lack of jointly labeled data, and outperforms SOTA methods on benchmarks for both temporal relation extraction and event hierarchy construction, replacing a commonly used but more expensive global inference process. We also present a promising case study to show the effectiveness of our approach to inducing event complexes on an external corpus.

pdf bib
Analogous Process Structure Induction for Sub-event Sequence Prediction
Hongming Zhang | Muhao Chen | Haoyu Wang | Yangqiu Song | Dan Roth
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Computational and cognitive studies of event understanding suggest that identifying, comprehending, and predicting events depend on having structured representations of a sequence of events and on conceptualizing (abstracting) its components into (soft) event categories. Thus, knowledge about a known process such as “buying a car” can be used in the context of a new but analogous process such as “buying a house”. Nevertheless, most event understanding work in NLP is still at the ground level and does not consider abstraction. In this paper, we propose an Analogous Process Structure Induction (APSI) framework, which leverages analogies among processes and conceptualization of sub-event instances to predict the whole sub-event sequence of previously unseen open-domain processes. As our experiments and analysis indicate, APSI supports the generation of meaningful sub-event sequences for unseen processes and can help predict missing events.


pdf bib
Out-of-Domain Detection for Low-Resource Text Classification Tasks
Ming Tan | Yang Yu | Haoyu Wang | Dakuo Wang | Saloni Potdar | Shiyu Chang | Mo Yu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Out-of-domain (OOD) detection for low-resource text classification is a realistic but understudied task. The goal is to detect the OOD cases with limited in-domain (ID) training data, since in machine learning applications we observe that training data is often insufficient. In this work, we propose an OOD-resistant Prototypical Network to tackle this zero-shot OOD detection and few-shot ID classification task. Evaluations on real-world datasets show that the proposed solution outperforms state-of-the-art methods in zero-shot OOD detection task, while maintaining a competitive performance on ID classification task.

pdf bib
Context-Aware Conversation Thread Detection in Multi-Party Chat
Ming Tan | Dakuo Wang | Yupeng Gao | Haoyu Wang | Saloni Potdar | Xiaoxiao Guo | Shiyu Chang | Mo Yu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

In multi-party chat, it is common for multiple conversations to occur concurrently, leading to intermingled conversation threads in chat logs. In this work, we propose a novel Context-Aware Thread Detection (CATD) model that automatically disentangles these conversation threads. We evaluate our model on four real-world datasets and demonstrate an overall im-provement in thread detection accuracy over state-of-the-art benchmarks.

pdf bib
Do Multi-hop Readers Dream of Reasoning Chains?
Haoyu Wang | Mo Yu | Xiaoxiao Guo | Rajarshi Das | Wenhan Xiong | Tian Gao
Proceedings of the 2nd Workshop on Machine Reading for Question Answering

General Question Answering (QA) systems over texts require the multi-hop reasoning capability, i.e. the ability to reason with information collected from multiple passages to derive the answer. In this paper we conduct a systematic analysis to assess such an ability of various existing models proposed for multi-hop QA tasks. Specifically, our analysis investigates that whether providing the full reasoning chain of multiple passages, instead of just one final passage where the answer appears, could improve the performance of the existing QA models. Surprisingly, when using the additional evidence passages, the improvements of all the existing multi-hop reading approaches are rather limited, with the highest error reduction of 5.8% on F1 (corresponding to 1.3% improvement) from the BERT model. To better understand whether the reasoning chains indeed could help find the correct answers, we further develop a co-matching-based method that leads to 13.1% error reduction with passage chains when applied to two of our base readers (including BERT). Our results demonstrate the existence of the potential improvement using explicit multi-hop reasoning and the necessity to develop models with better reasoning abilities.

pdf bib
Extracting Multiple-Relations in One-Pass with Pre-Trained Transformers
Haoyu Wang | Ming Tan | Mo Yu | Shiyu Chang | Dakuo Wang | Kun Xu | Xiaoxiao Guo | Saloni Potdar
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Many approaches to extract multiple relations from a paragraph require multiple passes over the paragraph. In practice, multiple passes are computationally expensive and this makes difficult to scale to longer paragraphs and larger text corpora. In this work, we focus on the task of multiple relation extractions by encoding the paragraph only once. We build our solution upon the pre-trained self-attentive models (Transformer), where we first add a structured prediction layer to handle extraction between multiple entity pairs, then enhance the paragraph embedding to capture multiple relational information associated with each entity with entity-aware attention. We show that our approach is not only scalable but can also perform state-of-the-art on the standard benchmark ACE 2005.


pdf bib
Diverse Few-Shot Text Classification with Multiple Metrics
Mo Yu | Xiaoxiao Guo | Jinfeng Yi | Shiyu Chang | Saloni Potdar | Yu Cheng | Gerald Tesauro | Haoyu Wang | Bowen Zhou
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We study few-shot learning in natural language domains. Compared to many existing works that apply either metric-based or optimization-based meta-learning to image domain with low inter-task variance, we consider a more realistic setting, where tasks are diverse. However, it imposes tremendous difficulties to existing state-of-the-art metric-based algorithms since a single metric is insufficient to capture complex task variations in natural language domain. To alleviate the problem, we propose an adaptive metric learning approach that automatically determines the best weighted combination from a set of metrics obtained from meta-training tasks for a newly seen few-shot task. Extensive quantitative evaluations on real-world sentiment analysis and dialog intent classification datasets demonstrate that the proposed method performs favorably against state-of-the-art few shot learning algorithms in terms of predictive accuracy. We make our code and data available for further study.