Haoyun Hong


2022

pdf bib
DeepStruct: Pretraining of Language Models for Structure Prediction
Chenguang Wang | Xiao Liu | Zui Chen | Haoyun Hong | Jie Tang | Dawn Song
Findings of the Association for Computational Linguistics: ACL 2022

We introduce a method for improving the structural understanding abilities of language models. Unlike previous approaches that finetune the models with task-specific augmentation, we pretrain language models to generate structures from the text on a collection of task-agnostic corpora. Our structure pretraining enables zero-shot transfer of the learned knowledge that models have about the structure tasks. We study the performance of this approach on 28 datasets, spanning 10 structure prediction tasks including open information extraction, joint entity and relation extraction, named entity recognition, relation classification, semantic role labeling, event extraction, coreference resolution, factual probe, intent detection, and dialogue state tracking. We further enhance the pretraining with the task-specific training sets. We show that a 10B parameter language model transfers non-trivially to most tasks and obtains state-of-the-art performance on 21 of 28 datasets that we evaluate. Our code and datasets will be made publicly available.

2021

pdf bib
Zero-Shot Information Extraction as a Unified Text-to-Triple Translation
Chenguang Wang | Xiao Liu | Zui Chen | Haoyun Hong | Jie Tang | Dawn Song
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We cast a suite of information extraction tasks into a text-to-triple translation framework. Instead of solving each task relying on task-specific datasets and models, we formalize the task as a translation between task-specific input text and output triples. By taking the task-specific input, we enable a task-agnostic translation by leveraging the latent knowledge that a pre-trained language model has about the task. We further demonstrate that a simple pre-training task of predicting which relational information corresponds to which input text is an effective way to produce task-specific outputs. This enables the zero-shot transfer of our framework to downstream tasks. We study the zero-shot performance of this framework on open information extraction (OIE2016, NYT, WEB, PENN), relation classification (FewRel and TACRED), and factual probe (Google-RE and T-REx). The model transfers non-trivially to most tasks and is often competitive with a fully supervised method without the need for any task-specific training. For instance, we significantly outperform the F1 score of the supervised open information extraction without needing to use its training set.