Harika Abburi


pdf bib
Multilingual ESG News Impact Identification Using an Augmented Ensemble Approach
Harika Abburi | Ajay Kumar | Edward Bowen | Balaji Veeramani
Proceedings of the Joint Workshop of the 7th Financial Technology and Natural Language Processing, the 5th Knowledge Discovery from Unstructured Data in Financial Services, and the 4th Workshop on Economics and Natural Language Processing @ LREC-COLING 2024

Determining the duration and length of a news event’s impact on a company’s performance remains elusive for financial analysts. The complexity arises from the fact that the effects of these news articles are influenced by various extraneous factors and can change over time. As a result, in this work, we investigate our ability to predict 1) the duration (length) of a news event’s impact, and 2) level of impact on companies. The datasets used in this study are provided as part of the Multi-Lingual ESG Impact Duration Inference (ML-ESG-3) shared task. To handle the data scarcity, we explored data augmentation techniques to augment our training data. To address each of the research objectives stated above, we employ an ensemble approach combining transformer model, a variant of Convolutional Neural Networks (CNNs), specifically the KimCNN model and contextual embeddings. The model’s performance is assessed across a multilingual dataset encompassing English, French, Japanese, and Korean news articles. For the first task of determining impact duration, our model ranked in first, fifth, seventh, and eight place for Japanese, French, Korean and English texts respectively (with respective macro F1 scores of 0.256, 0.458, 0.552, 0.441). For the second task of assessing impact level, our model ranked in sixth, and eight place for French and English texts, respectively (with respective macro F1 scores of 0.488 and 0.550).


pdf bib
A Simple yet Efficient Ensemble Approach for AI-generated Text Detection
Harika Abburi | Kalyani Roy | Michael Suesserman | Nirmala Pudota | Balaji Veeramani | Edward Bowen | Sanmitra Bhattacharya
Proceedings of the Third Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)

Recent Large Language Models (LLMs) have demonstrated remarkable capabilities in generating text that closely resembles human writing across wide range of styles and genres. However, such capabilities are prone to potential abuse, such as fake news generation, spam email creation, and misuse in academic assignments. Hence, it is essential to build automated approaches capable of distinguishing between artificially generated text and human-authored text. In this paper, we propose a simple yet efficient solution to this problem by ensembling predictions from multiple constituent LLMs. Compared to previous state-of-the-art approaches, which are perplexity-based or uses ensembles with a large number of LLMs, our condensed ensembling approach uses only two constituent LLMs to achieve comparable performance. Experiments conducted on four benchmark datasets for generative text classification show performance improvements in the range of 0.5 to 100% compared to previous state-of-the-art approaches. We also study that the influence the training data from individual LLMs have on model performance. We found that substituting commercially-restrictive Generative Pre-trained Transformer (GPT) data with data generated from other open language models such as Falcon, Large Language Model Meta AI (LLaMA2), and Mosaic Pretrained Transformers (MPT) is a feasible alternative when developing generative text detectors. Furthermore, to demonstrate zero-shot generalization, we experimented with an English essays dataset, and results suggest that our ensembling approach can handle new data effectively.


pdf bib
Leveraging Mental Health Forums for User-level Depression Detection on Social Media
Sravani Boinepelli | Tathagata Raha | Harika Abburi | Pulkit Parikh | Niyati Chhaya | Vasudeva Varma
Proceedings of the Thirteenth Language Resources and Evaluation Conference

The number of depression and suicide risk cases on social media platforms is ever-increasing, and the lack of depression detection mechanisms on these platforms is becoming increasingly apparent. A majority of work in this area has focused on leveraging linguistic features while dealing with small-scale datasets. However, one faces many obstacles when factoring into account the vastness and inherent imbalance of social media content. In this paper, we aim to optimize the performance of user-level depression classification to lessen the burden on computational resources. The resulting system executes in a quicker, more efficient manner, in turn making it suitable for deployment. To simulate a platform agnostic framework, we simultaneously replicate the size and composition of social media to identify victims of depression. We systematically design a solution that categorizes post embeddings, obtained by fine-tuning transformer models such as RoBERTa, and derives user-level representations using hierarchical attention networks. We also introduce a novel mental health dataset to enhance the performance of depression categorization. We leverage accounts of depression taken from this dataset to infuse domain-specific elements into our framework. Our proposed methods outperform numerous baselines across standard metrics for the task of depression detection in text.


pdf bib
Semi-supervised Multi-task Learning for Multi-label Fine-grained Sexism Classification
Harika Abburi | Pulkit Parikh | Niyati Chhaya | Vasudeva Varma
Proceedings of the 28th International Conference on Computational Linguistics

Sexism, a form of oppression based on one’s sex, manifests itself in numerous ways and causes enormous suffering. In view of the growing number of experiences of sexism reported online, categorizing these recollections automatically can assist the fight against sexism, as it can facilitate effective analyses by gender studies researchers and government officials involved in policy making. In this paper, we investigate the fine-grained, multi-label classification of accounts (reports) of sexism. To the best of our knowledge, we work with considerably more categories of sexism than any published work through our 23-class problem formulation. Moreover, we propose a multi-task approach for fine-grained multi-label sexism classification that leverages several supporting tasks without incurring any manual labeling cost. Unlabeled accounts of sexism are utilized through unsupervised learning to help construct our multi-task setup. We also devise objective functions that exploit label correlations in the training data explicitly. Multiple proposed methods outperform the state-of-the-art for multi-label sexism classification on a recently released dataset across five standard metrics.


pdf bib
Multi-label Categorization of Accounts of Sexism using a Neural Framework
Pulkit Parikh | Harika Abburi | Pinkesh Badjatiya | Radhika Krishnan | Niyati Chhaya | Manish Gupta | Vasudeva Varma
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Sexism, an injustice that subjects women and girls to enormous suffering, manifests in blatant as well as subtle ways. In the wake of growing documentation of experiences of sexism on the web, the automatic categorization of accounts of sexism has the potential to assist social scientists and policy makers in utilizing such data to study and counter sexism better. The existing work on sexism classification, which is different from sexism detection, has certain limitations in terms of the categories of sexism used and/or whether they can co-occur. To the best of our knowledge, this is the first work on the multi-label classification of sexism of any kind(s), and we contribute the largest dataset for sexism categorization. We develop a neural solution for this multi-label classification that can combine sentence representations obtained using models such as BERT with distributional and linguistic word embeddings using a flexible, hierarchical architecture involving recurrent components and optional convolutional ones. Further, we leverage unlabeled accounts of sexism to infuse domain-specific elements into our framework. The best proposed method outperforms several deep learning as well as traditional machine learning baselines by an appreciable margin.