Harsh Verma


2023

pdf bib
CLaC at SemEval-2023 Task 2: Comparing Span-Prediction and Sequence-Labeling Approaches for NER
Harsh Verma | Sabine Bergler
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

This paper summarizes the CLaC submission for the MultiCoNER 2 task which concerns the recognition of complex, fine-grained named entities. We compare two popular approaches for NER, namely SequenceLabeling and Span Prediction. We find that our best Span Prediction system performs slightly better than our best Sequence Labeling system on test data. Moreover, we find that using the larger version of XLM RoBERTa significantly improves performance. Post-competition experiments show that Span Prediction and Sequence Labeling approaches improve when they use special input tokens ([s] and [/s]) of XLM-RoBERTa. The code for training all models, preprocessing, and post-processing is available at https://github.com/harshshredding/semeval2023-multiconer-paper.

pdf bib
Comparing and combining some popular NER approaches on Biomedical tasks
Harsh Verma | Sabine Bergler | Narjesossadat Tahaei
The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks

We compare three simple and popular approaches for NER: 1) SEQ (sequence labeling with a linear token classifier) 2) SeqCRF (sequence labeling with Conditional Random Fields), and 3) SpanPred (span prediction with boundary token embeddings). We compare the approaches on 4 biomedical NER tasks: GENIA, NCBI-Disease, LivingNER (Spanish), and SocialDisNER (Spanish). The SpanPred model demonstrates state-of-the-art performance on LivingNER and SocialDisNER, improving F1 by 1.3 and 0.6 F1 respectively. The SeqCRF model also demonstrates state-of-the-art performance on LivingNER and SocialDisNER, improving F1 by 0.2 F1 and 0.7 respectively. The SEQ model is competitive with the state-of-the-art on LivingNER dataset. We explore some simple ways of combining the three approaches. We find that majority voting consistently gives high precision and high F1 across all 4 datasets. Lastly, we implement a system that learns to combine SEQ’s and SpanPred’s predictions, generating systems that give high recall and high F1 across all 4 datasets. On the GENIA dataset, we find that our learned combiner system significantly boosts F1(+1.2) and recall(+2.1) over the systems being combined.

2022

pdf bib
CLaCLab at SocialDisNER: Using Medical Gazetteers for Named-Entity Recognition of Disease Mentions in Spanish Tweets
Harsh Verma | Parsa Bagherzadeh | Sabine Bergler
Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task

This paper summarizes the CLaC submission for SMM4H 2022 Task 10 which concerns the recognition of diseases mentioned in Spanish tweets. Before classifying each token, we encode each token with a transformer encoder using features from Multilingual RoBERTa Large, UMLS gazetteer, and DISTEMIST gazetteer, among others. We obtain a strict F1 score of 0.869, with competition mean of 0.675, standard deviation of 0.245, and median of 0.761.