Hasham Haq
2023
Automated De-Identification of Arabic Medical Records
Veysel Kocaman
|
Youssef Mellah
|
Hasham Haq
|
David Talby
Proceedings of ArabicNLP 2023
As Electronic Health Records (EHR) become ubiquitous in healthcare systems worldwide, including in Arabic-speaking countries, the dual imperative of safeguarding patient privacy and leveraging data for research and quality improvement grows. This paper presents a first-of-its-kind automated de-identification pipeline for medical text specifically tailored for the Arabic language. This includes accurate medical Named Entity Recognition (NER) for identifying personal information; data obfuscation models to replace sensitive entities with fake entities; and an implementation that natively scales to large datasets on commodity clusters. This research makes two contributions. First, we adapt two existing NER architectures— BERT For Token Classification (BFTC) and BiLSTM-CNN-Char – to accommodate the unique syntactic and morphological characteristics of the Arabic language. Comparative analysis suggests that BFTC models outperform Bi-LSTM models, achieving higher F1 scores for both identifying and redacting personally identifiable information (PII) from Arabic medical texts. Second, we augment the deep learning models with a contextual parser engine to handle commonly missed entities. Experiments show that the combined pipeline demonstrates superior performance with micro F1 scores ranging from 0.94 to 0.98 on the test dataset, which is a translated version of the i2b2 2014 de-identification challenge, across 17 sensitive entities. This level of accuracy is in line with that achieved with manual de-identification by domain experts, suggesting that a fully automated and scalable process is now viable.
Search