Hayato Tsukagoshi


pdf bib
WikiSplit++: Easy Data Refinement for Split and Rephrase
Hayato Tsukagoshi | Tsutomu Hirao | Makoto Morishita | Katsuki Chousa | Ryohei Sasano | Koichi Takeda
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The task of Split and Rephrase, which splits a complex sentence into multiple simple sentences with the same meaning, improves readability and enhances the performance of downstream tasks in natural language processing (NLP). However, while Split and Rephrase can be improved using a text-to-text generation approach that applies encoder-decoder models fine-tuned with a large-scale dataset, it still suffers from hallucinations and under-splitting. To address these issues, this paper presents a simple and strong data refinement approach. Here, we create WikiSplit++ by removing instances in WikiSplit where complex sentences do not entail at least one of the simpler sentences and reversing the order of reference simple sentences. Experimental results show that training with WikiSplit++ leads to better performance than training with WikiSplit, even with fewer training instances. In particular, our approach yields significant gains in the number of splits and the entailment ratio, a proxy for measuring hallucinations.

pdf bib
Sentence Representations via Gaussian Embedding
Shohei Yoda | Hayato Tsukagoshi | Ryohei Sasano | Koichi Takeda
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)

Recent progress in sentence embedding, which represents a sentence’s meaning as a point in a vector space, has achieved high performance on several tasks such as the semantic textual similarity (STS) task.However, a sentence representation cannot adequately express the diverse information that sentences contain: for example, such representations cannot naturally handle asymmetric relationships between sentences.This paper proposes GaussCSE, a Gaussian-distribution-based contrastive learning framework for sentence embedding that can handle asymmetric inter-sentential relations, as well as a similarity measure for identifying entailment relations.Our experiments show that GaussCSE achieves performance comparable to that of previous methods on natural language inference (NLI) tasks, and that it can estimate the direction of entailment relations, which is difficult with point representations.


pdf bib
Comparison and Combination of Sentence Embeddings Derived from Different Supervision Signals
Hayato Tsukagoshi | Ryohei Sasano | Koichi Takeda
Proceedings of the 11th Joint Conference on Lexical and Computational Semantics

There have been many successful applications of sentence embedding methods. However, it has not been well understood what properties are captured in the resulting sentence embeddings depending on the supervision signals. In this paper, we focus on two types of sentence embedding methods with similar architectures and tasks: one fine-tunes pre-trained language models on the natural language inference task, and the other fine-tunes pre-trained language models on word prediction task from its definition sentence, and investigate their properties. Specifically, we compare their performances on semantic textual similarity (STS) tasks using STS datasets partitioned from two perspectives: 1) sentence source and 2) superficial similarity of the sentence pairs, and compare their performances on the downstream and probing tasks. Furthermore, we attempt to combine the two methods and demonstrate that combining the two methods yields substantially better performance than the respective methods on unsupervised STS tasks and downstream tasks.


pdf bib
DefSent: Sentence Embeddings using Definition Sentences
Hayato Tsukagoshi | Ryohei Sasano | Koichi Takeda
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Sentence embedding methods using natural language inference (NLI) datasets have been successfully applied to various tasks. However, these methods are only available for limited languages due to relying heavily on the large NLI datasets. In this paper, we propose DefSent, a sentence embedding method that uses definition sentences from a word dictionary, which performs comparably on unsupervised semantics textual similarity (STS) tasks and slightly better on SentEval tasks than conventional methods. Since dictionaries are available for many languages, DefSent is more broadly applicable than methods using NLI datasets without constructing additional datasets. We demonstrate that DefSent performs comparably on unsupervised semantics textual similarity (STS) tasks and slightly better on SentEval tasks to the methods using large NLI datasets. Our code is publicly available at https://github.com/hpprc/defsent.