Helena Bonaldi


pdf bib
NLP for Counterspeech against Hate: A Survey and How-To Guide
Helena Bonaldi | Yi-Ling Chung | Gavin Abercrombie | Marco Guerini
Findings of the Association for Computational Linguistics: NAACL 2024

In recent years, counterspeech has emerged as one of the most promising strategies to fight online hate. These non-escalatory responses tackle online abuse while preserving the freedom of speech of the users, and can have a tangible impact in reducing online and offline violence. Recently, there has been growing interest from the Natural Language Processing (NLP) community in addressing the challenges of analysing, collecting, classifying, and automatically generating counterspeech, to reduce the huge burden of manually producing it. In particular, researchers have taken different directions in addressing these challenges, thus providing a variety of related tasks and resources. In this paper, we provide a guide for doing research on counterspeech, by describing - with detailed examples - the steps to undertake, and providing best practices that can be learnt from the NLP studies on this topic. Finally, we discuss open challenges and future directions of counterspeech research in NLP.


pdf bib
Weigh Your Own Words: Improving Hate Speech Counter Narrative Generation via Attention Regularization
Helena Bonaldi | Giuseppe Attanasio | Debora Nozza | Marco Guerini
Proceedings of the 1st Workshop on CounterSpeech for Online Abuse (CS4OA)

Recent computational approaches for combating online hate speech involve the automatic generation of counter narratives by adapting Pretrained Transformer-based Language Models (PLMs) with human-curated data. This process, however, can produce in-domain overfitting, resulting in models generating acceptable narratives only for hatred similar to training data, with little portability to other targets or to real-world toxic language. This paper introduces novel attention regularization methodologies to improve the generalization capabilities of PLMs for counter narratives generation. Overfitting to training-specific terms is then discouraged, resulting in more diverse and richer narratives. We experiment with two attention-based regularization techniques on a benchmark English dataset. Regularized models produce better counter narratives than state-of-the-art approaches in most cases, both in terms of automatic metrics and human evaluation, especially when hateful targets are not present in the training data. This work paves the way for better and more flexible counter-speech generation models, a task for which datasets are highly challenging to produce.


pdf bib
Human-Machine Collaboration Approaches to Build a Dialogue Dataset for Hate Speech Countering
Helena Bonaldi | Sara Dellantonio | Serra Sinem Tekiroğlu | Marco Guerini
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Fighting online hate speech is a challenge that is usually addressed using Natural Language Processing via automatic detection and removal of hate content. Besides this approach, counter narratives have emerged as an effective tool employed by NGOs to respond to online hate on social media platforms. For this reason, Natural Language Generation is currently being studied as a way to automatize counter narrative writing. However, the existing resources necessary to train NLG models are limited to 2-turn interactions (a hate speech and a counter narrative as response), while in real life, interactions can consist of multiple turns. In this paper, we present a hybrid approach for dialogical data collection, which combines the intervention of human expert annotators over machine generated dialogues obtained using 19 different configurations. The result of this work is DIALOCONAN, the first dataset comprising over 3000 fictitious multi-turn dialogues between a hater and an NGO operator, covering 6 targets of hate.

pdf bib
Using Pre-Trained Language Models for Producing Counter Narratives Against Hate Speech: a Comparative Study
Serra Sinem Tekiroğlu | Helena Bonaldi | Margherita Fanton | Marco Guerini
Findings of the Association for Computational Linguistics: ACL 2022

In this work, we present an extensive study on the use of pre-trained language models for the task of automatic Counter Narrative (CN) generation to fight online hate speech in English. We first present a comparative study to determine whether there is a particular Language Model (or class of LMs) and a particular decoding mechanism that are the most appropriate to generate CNs. Findings show that autoregressive models combined with stochastic decodings are the most promising. We then investigate how an LM performs in generating a CN with regard to an unseen target of hate. We find out that a key element for successful ‘out of target’ experiments is not an overall similarity with the training data but the presence of a specific subset of training data, i. e. a target that shares some commonalities with the test target that can be defined a-priori. We finally introduce the idea of a pipeline based on the addition of an automatic post-editing step to refine generated CNs.


pdf bib
Human-in-the-Loop for Data Collection: a Multi-Target Counter Narrative Dataset to Fight Online Hate Speech
Margherita Fanton | Helena Bonaldi | Serra Sinem Tekiroğlu | Marco Guerini
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Undermining the impact of hateful content with informed and non-aggressive responses, called counter narratives, has emerged as a possible solution for having healthier online communities. Thus, some NLP studies have started addressing the task of counter narrative generation. Although such studies have made an effort to build hate speech / counter narrative (HS/CN) datasets for neural generation, they fall short in reaching either high-quality and/or high-quantity. In this paper, we propose a novel human-in-the-loop data collection methodology in which a generative language model is refined iteratively by using its own data from the previous loops to generate new training samples that experts review and/or post-edit. Our experiments comprised several loops including diverse dynamic variations. Results show that the methodology is scalable and facilitates diverse, novel, and cost-effective data collection. To our knowledge, the resulting dataset is the only expert-based multi-target HS/CN dataset available to the community.