Helena Hubková
2021
Transfer Learning for Czech Historical Named Entity Recognition
Helena Hubková
|
Pavel Kral
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)
Nowadays, named entity recognition (NER) achieved excellent results on the standard corpora. However, big issues are emerging with a need for an application in a specific domain, because it requires a suitable annotated corpus with adapted NE tag-set. This is particularly evident in the historical document processing field. The main goal of this paper consists of proposing and evaluation of several transfer learning methods to increase the score of the Czech historical NER. We study several information sources, and we use two neural nets for NE modeling and recognition. We employ two corpora for evaluation of our transfer learning methods, namely Czech named entity corpus and Czech historical named entity corpus. We show that BERT representation with fine-tuning and only the simple classifier trained on the union of corpora achieves excellent results.
2020
Czech Historical Named Entity Corpus v 1.0
Helena Hubková
|
Pavel Kral
|
Eva Pettersson
Proceedings of the Twelfth Language Resources and Evaluation Conference
As the number of digitized archival documents increases very rapidly, named entity recognition (NER) in historical documents has become very important for information extraction and data mining. For this task an annotated corpus is needed, which has up to now been missing for Czech. In this paper we present a new annotated data collection for historical NER, composed of Czech historical newspapers. This corpus is freely available for research purposes. For this corpus, we have defined relevant domain-specific named entity types and created an annotation manual for corpus labelling. We further conducted some experiments on this corpus using recurrent neural networks. We experimented with randomly initialized embeddings and static and dynamic fastText word embeddings. We achieved 0.73 F1 score with a bidirectional LSTM model using static fastText embeddings.