2024
pdf
bib
abs
PokeMQA: Programmable knowledge editing for Multi-hop Question Answering
Hengrui Gu
|
Kaixiong Zhou
|
Xiaotian Han
|
Ninghao Liu
|
Ruobing Wang
|
Xin Wang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Multi-hop question answering (MQA) is one of the challenging tasks to evaluate machine’s comprehension and reasoning abilities, where large language models (LLMs) have widely achieved the human-comparable performance. Due to the dynamics of knowledge facts in real world, knowledge editing has been explored to update model with the up-to-date facts while avoiding expensive re-training or fine-tuning. Starting from the edited fact, the updated model needs to provide cascading changes in the chain of MQA. The previous art simply adopts a mix-up prompt to instruct LLMs conducting multiple reasoning tasks sequentially, including question decomposition, answer generation, and conflict checking via comparing with edited facts. However, the coupling of these functionally-diverse reasoning tasks inhibits LLMs’ advantages in comprehending and answering questions while disturbing them with the unskilled task of conflict checking. We thus propose a framework, Programmable knowledge editing for Multi-hop Question Answering (PokeMQA), to decouple the jobs. Specifically, we prompt LLMs to decompose knowledge-augmented multi-hop question, while interacting with a detached trainable scope detector to modulate LLMs behavior depending on external conflict signal. The experiments on three LLM backbones and two benchmark datasets validate our superiority in knowledge editing of MQA, outperforming all competitors by a large margin in almost all settings and consistently producing reliable reasoning process.
pdf
bib
abs
Mitigate Extrinsic Social Bias in Pre-trained Language Models via Continuous Prompts Adjustment
Yiwei Dai
|
Hengrui Gu
|
Ying Wang
|
Xin Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Although pre-trained language models (PLMs) have been widely used in natural language understandings (NLU), they are still exposed to fairness issues. Most existing extrinsic debiasing methods rely on manually curated word lists for each sensitive groups to modify training data or to add regular constraints. However, these word lists are often limited by length and scope, resulting in the degradation performance of extrinsic bias mitigation. To address the aforementioned issues, we propose a **C**ontinuous **P**rompts **A**djustment **D**ebiasing method (CPAD), which generates continuous token lists from the entire vocabulary space and uses them to bridge the gap between outputs and targets in fairness learning process. Specifically, CPAD encapsulates fine-tuning objective and debiasing objectives into several independent prompts. To avoid the limitation of manual word lists, in fairness learning phase, we extract outputs from the entire vocabulary space via fine-tuned PLM. Then, we aggregate the outputs from the same sensitive group as continuous token lists to map the outputs into protected attribute labels. Finally, after we learn the debiasing prompts in the perspective of adversarial learning, we improve fairness by adjusting continuous prompts at model inference time. Through extensive experiments on three NLU tasks, we evaluate the debiasing performance from the perspectives of group fairness and fairness through unawareness. The experimental results show that CPAD outperforms all baselines in term of single and two-attributes debiasing performance.
pdf
bib
abs
Cross-Lingual Multi-Hop Knowledge Editing
Aditi Khandelwal
|
Harman Singh
|
Hengrui Gu
|
Tianlong Chen
|
Kaixiong Zhou
Findings of the Association for Computational Linguistics: EMNLP 2024
Large language models (LLMs) are often expected to be constantly adapted to new sources of knowledge and knowledge editing techniques aim to efficiently patch the outdated model knowledge, with minimal modification. Most prior works focus on monolingual knowledge editing in English, even though new information can emerge in any language from any part of the world. We propose the Cross-Lingual Multi-Hop Knowledge Editing paradigm, for measuring and analyzing the performance of various SoTA knowledge editing techniques in a cross-lingual setup. Specifically, we create a parallel cross-lingual benchmark, CroLin-MQuAKE for measuring the knowledge editing capabilities. Our extensive analysis over various knowledge editing techniques uncover significant gaps in performance between the cross-lingual and English-centric setting. Following this, we propose a significantly improved system for cross-lingual multi-hop knowledge editing, CLeVer-CKE. CLeVer-CKE is based on a retrieve, verify and generate knowledge editing framework, where a retriever is formulated to recall edited facts and support an LLM to adhere to knowledge edits. We develop language-aware and hard-negative based contrastive losses for improving the cross-lingual and fine-grained fact retrieval and verification process used within this framework. Extensive experiments across three LLMs, eight languages, and two datasets show the CLeVer-CKE’s significant gains of up to 30% over prior methods.
pdf
bib
abs
Pioneering Reliable Assessment in Text-to-Image Knowledge Editing: Leveraging a Fine-Grained Dataset and an Innovative Criterion
Hengrui Gu
|
Kaixiong Zhou
|
Yili Wang
|
Ruobing Wang
|
Xin Wang
Findings of the Association for Computational Linguistics: EMNLP 2024
During pre-training, the Text-to-Image (T2I) diffusion models encode factual knowledge into their parameters. These parameterized facts enable realistic image generation, but they may become obsolete over time, thereby misrepresenting the current state of the world. Knowledge editing techniques aim to update model knowledge in a targeted way. However, facing the dual challenges posed by inadequate editing datasets and unreliable evaluation criterion, the development of T2I knowledge editing encounter difficulties in effectively generalizing injected knowledge. In this work, we design a T2I knowledge editing framework by comprehensively spanning on three phases: First, we curate a dataset CAKE, comprising paraphrase and multi-object test, to enable more fine-grained assessment on knowledge generalization. Second, we propose a novel criterion, adaptive CLIP threshold, to effectively filter out false successful images under the current criterion and achieve reliable editing evaluation. Finally, we introduce MPE, a simple but effective approach for T2I knowledge editing. Instead of tuning parameters, MPE precisely recognizes and edits the outdated part of the conditioning text-prompt to accommodate the up-to-date knowledge. A straightforward implementation of MPE (Based on in-context learning) exhibits better overall performance than previous model editors. We hope these efforts can further promote faithful evaluation of T2I knowledge editing methods.