Hengzhi Pei


pdf bib
A Concise Model for Multi-Criteria Chinese Word Segmentation with Transformer Encoder
Xipeng Qiu | Hengzhi Pei | Hang Yan | Xuanjing Huang
Findings of the Association for Computational Linguistics: EMNLP 2020

Multi-criteria Chinese word segmentation (MCCWS) aims to exploit the relations among the multiple heterogeneous segmentation criteria and further improve the performance of each single criterion. Previous work usually regards MCCWS as different tasks, which are learned together under the multi-task learning framework. In this paper, we propose a concise but effective unified model for MCCWS, which is fully-shared for all the criteria. By leveraging the powerful ability of the Transformer encoder, the proposed unified model can segment Chinese text according to a unique criterion-token indicating the output criterion. Besides, the proposed unified model can segment both simplified and traditional Chinese and has an excellent transfer capability. Experiments on eight datasets with different criteria show that our model outperforms our single-criterion baseline model and other multi-criteria models. Source codes of this paper are available on Github.

pdf bib
T3: Tree-Autoencoder Constrained Adversarial Text Generation for Targeted Attack
Boxin Wang | Hengzhi Pei | Boyuan Pan | Qian Chen | Shuohang Wang | Bo Li
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Adversarial attacks against natural language processing systems, which perform seemingly innocuous modifications to inputs, can induce arbitrary mistakes to the target models. Though raised great concerns, such adversarial attacks can be leveraged to estimate the robustness of NLP models. Compared with the adversarial example generation in continuous data domain (e.g., image), generating adversarial text that preserves the original meaning is challenging since the text space is discrete and non-differentiable. To handle these challenges, we propose a target-controllable adversarial attack framework T3, which is applicable to a range of NLP tasks. In particular, we propose a tree-based autoencoder to embed the discrete text data into a continuous representation space, upon which we optimize the adversarial perturbation. A novel tree-based decoder is then applied to regularize the syntactic correctness of the generated text and manipulate it on either sentence (T3(Sent)) or word (T3(Word)) level. We consider two most representative NLP tasks: sentiment analysis and question answering (QA). Extensive experimental results and human studies show that T3 generated adversarial texts can successfully manipulate the NLP models to output the targeted incorrect answer without misleading the human. Moreover, we show that the generated adversarial texts have high transferability which enables the black-box attacks in practice. Our work sheds light on an effective and general way to examine the robustness of NLP models. Our code is publicly available at https://github.com/AI-secure/T3/.