In this study, we created an automated essay scoring (AES) system for nonnative Japanese learners using an essay dataset with annotations for a holistic score and multiple trait scores, including content, organization, and language scores. In particular, we developed AES systems using two different approaches: a feature-based approach and a neural-network-based approach. In the former approach, we used Japanese-specific linguistic features, including character-type features such as “kanji” and “hiragana.” In the latter approach, we used two models: a long short-term memory (LSTM) model (Hochreiter and Schmidhuber, 1997) and a bidirectional encoder representations from transformers (BERT) model (Devlin et al., 2019), which achieved the highest accuracy in various natural language processing tasks in 2018. Overall, the BERT model achieved the best root mean squared error and quadratic weighted kappa scores. In addition, we analyzed the robustness of the outputs of the BERT model. We have released and shared this system to facilitate further research on AES for Japanese as a second language learners.
We introduce the TMUOU submission for the WMT20 Quality Estimation Shared Task 1: Sentence-Level Direct Assessment. Our system is an ensemble model of four regression models based on XLM-RoBERTa with language tags. We ranked 4th in Pearson and 2nd in MAE and RMSE on a multilingual track.
In this paper, we introduce our participation in the WMT 2019 Metric Shared Task. We propose an improved version of sentence BLEU using filtered pseudo-references. We propose a method to filter pseudo-references by paraphrasing for automatic evaluation of machine translation (MT). We use the outputs of off-the-shelf MT systems as pseudo-references filtered by paraphrasing in addition to a single human reference (gold reference). We use BERT fine-tuned with paraphrase corpus to filter pseudo-references by checking the paraphrasability with the gold reference. Our experimental results of the WMT 2016 and 2017 datasets show that our method achieved higher correlation with human evaluation than the sentence BLEU (SentBLEU) baselines with a single reference and with unfiltered pseudo-references.
Sentence representations can capture a wide range of information that cannot be captured by local features based on character or word N-grams. This paper examines the usefulness of universal sentence representations for evaluating the quality of machine translation. Al-though it is difficult to train sentence representations using small-scale translation datasets with manual evaluation, sentence representations trained from large-scale data in other tasks can improve the automatic evaluation of machine translation. Experimental results of the WMT-2016 dataset show that the proposed method achieves state-of-the-art performance with sentence representation features only.
We introduce the RUSE metric for the WMT18 metrics shared task. Sentence embeddings can capture global information that cannot be captured by local features based on character or word N-grams. Although training sentence embeddings using small-scale translation datasets with manual evaluation is difficult, sentence embeddings trained from large-scale data in other tasks can improve the automatic evaluation of machine translation. We use a multi-layer perceptron regressor based on three types of sentence embeddings. The experimental results of the WMT16 and WMT17 datasets show that the RUSE metric achieves a state-of-the-art performance in both segment- and system-level metrics tasks with embedding features only.