Hodong Lee


2024

pdf bib
Ask, Assess, and Refine: Rectifying Factual Consistency and Hallucination in LLMs with Metric-Guided Feedback Learning
Dongyub Lee | Eunhwan Park | Hodong Lee | Heuiseok Lim
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advancements in Large Language Models (LLMs) have heralded unprecedented capabilities in information-seeking and text generation, as evidenced by applications like Bing Chat and perplexity.ai. Despite these strides, challenges on hallucination and factual inconsistency continue to impede their wider real-world adoption. Contemporary methods, including retrieval-augmented LLMs and feedback-based learning, serve as alternatives to mitigate these challenges. However, challenges remain, particularly regarding referencing erroneous evidence (citation errors) and generating information not present in the evidence (hallucination). In this paper, we introduce the 𝖠2𝖱 framework: Ask, Assess, and Refine. Our approach utilizes an explicit evaluation paradigm, incorporating metrics specifically tailored to assess citation errors and hallucination, aiming to address these prevalent challenges robustly. Capitalizing on these evaluations, we devise a strategy to formulate actionable natural language feedback, enabling iterative refinements that yield improved factual consistency and reduced hallucinations in responses. Our experiments on ASQA, ELI5, and QAMPARI datasets demonstrate our method’s superiority in enhancing correctness, fluency, and citation quality.

2023

pdf bib
Visually-Situated Natural Language Understanding with Contrastive Reading Model and Frozen Large Language Models
Geewook Kim | Hodong Lee | Daehee Kim | Haeji Jung | Sanghee Park | Yoonsik Kim | Sangdoo Yun | Taeho Kil | Bado Lee | Seunghyun Park
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Recent advances in Large Language Models (LLMs) have stimulated a surge of research aimed at extending their applications to the visual domain. While these models exhibit promise in generating abstract image captions and facilitating natural conversations, their performance on text-rich images still requires improvement. In this paper, we introduce Contrastive Reading Model (Cream), a novel neural architecture designed to enhance the language-image understanding capability of LLMs by capturing intricate details that are often overlooked in existing methods. Cream combines vision and auxiliary encoders, fortified by a contrastive feature alignment technique, to achieve a more effective comprehension of language information in visually situated contexts within the images. Our approach bridges the gap between vision and language understanding, paving the way for the development of more sophisticated Document Intelligence Assistants. Through rigorous evaluations across diverse visually-situated language understanding tasks that demand reasoning capabilities, we demonstrate the compelling performance of Cream, positioning it as a prominent model in the field of visual document understanding. We provide our codebase and newly-generated datasets at https://github.com/naver-ai/cream.

2022

pdf bib
Don’t Judge a Language Model by Its Last Layer: Contrastive Learning with Layer-Wise Attention Pooling
Dongsuk Oh | Yejin Kim | Hodong Lee | H. Howie Huang | Heuiseok Lim
Proceedings of the 29th International Conference on Computational Linguistics

Recent pre-trained language models (PLMs) achieved great success on many natural language processing tasks through learning linguistic features and contextualized sentence representation. Since attributes captured in stacked layers of PLMs are not clearly identified, straightforward approaches such as embedding the last layer are commonly preferred to derive sentence representations from PLMs. This paper introduces the attention-based pooling strategy, which enables the model to preserve layer-wise signals captured in each layer and learn digested linguistic features for downstream tasks. The contrastive learning objective can adapt the layer-wise attention pooling to both unsupervised and supervised manners. It results in regularizing the anisotropic space of pre-trained embeddings and being more uniform. We evaluate our model on standard semantic textual similarity (STS) and semantic search tasks. As a result, our method improved the performance of the base contrastive learned BERTbase and variants.

2016

pdf bib
An Effective Diverse Decoding Scheme for Robust Synonymous Sentence Translation
Youngki Park | Hwidong Na | Hodong Lee | Jihyun Lee | Inchul Song
Conferences of the Association for Machine Translation in the Americas: MT Researchers' Track

2002

pdf bib
Natural Language Interpretations for Heterogeneous Database Access
Hodong Lee | Jong C. Park
COLING 2002: The 19th International Conference on Computational Linguistics

2001

pdf bib
Automatic Augmentation of Translation Dictionary with Database Terminologies In Multilingual Query Interpretation
Hodong Lee | Jong C. Park
Proceedings of the ACL 2001 Workshop on Human Language Technology and Knowledge Management