Hongfei Xu


2023

pdf bib
A Closer Look at Transformer Attention for Multilingual Translation
Jingyi Zhang | Gerard de Melo | Hongfei Xu | Kehai Chen
Proceedings of the Eighth Conference on Machine Translation

Transformers are the predominant model for machine translation. Recent works also showed that a single Transformer model can be trained to learn translation for multiple different language pairs, achieving promising results. In this work, we investigate how the multilingual Transformer model pays attention for translating different language pairs. We first performed automatic pruning to eliminate a large number of noisy heads and then analyzed the functions and behaviors of the remaining heads in both self-attention and cross-attention. We find that different language pairs, in spite of having different syntax and word orders, tended to share the same heads for the same functions, such as syntax heads and reordering heads. However, the different characteristics of different language pairs clearly caused interference in function heads and affected head accuracies. Additionally, we reveal an interesting behavior of the Transformer cross-attention: the deep-layer cross-attention heads work in a clear cooperative way to learn different options for word reordering, which can be caused by the nature of translation tasks having multiple different gold translations in the target language for the same source sentence.

2022

pdf bib
ParaZh-22M: A Large-Scale Chinese Parabank via Machine Translation
Wenjie Hao | Hongfei Xu | Deyi Xiong | Hongying Zan | Lingling Mu
Proceedings of the 29th International Conference on Computational Linguistics

Paraphrasing, i.e., restating the same meaning in different ways, is an important data augmentation approach for natural language processing (NLP). Zhang et al. (2019b) propose to extract sentence-level paraphrases from multiple Chinese translations of the same source texts, and construct the PKU Paraphrase Bank of 0.5M sentence pairs. However, despite being the largest Chinese parabank to date, the size of PKU parabank is limited by the availability of one-to-many sentence translation data, and cannot well support the training of large Chinese paraphrasers. In this paper, we relieve the restriction with one-to-many sentence translation data, and construct ParaZh-22M, a larger Chinese parabank that is composed of 22M sentence pairs, based on one-to-one bilingual sentence translation data and machine translation (MT). In our data augmentation experiments, we show that paraphrasing based on ParaZh-22M can bring about consistent and significant improvements over several strong baselines on a wide range of Chinese NLP tasks, including a number of Chinese natural language understanding benchmarks (CLUE) and low-resource machine translation.

2021

pdf bib
Learning Hard Retrieval Decoder Attention for Transformers
Hongfei Xu | Qiuhui Liu | Josef van Genabith | Deyi Xiong
Findings of the Association for Computational Linguistics: EMNLP 2021

The Transformer translation model is based on the multi-head attention mechanism, which can be parallelized easily. The multi-head attention network performs the scaled dot-product attention function in parallel, empowering the model by jointly attending to information from different representation subspaces at different positions. In this paper, we present an approach to learning a hard retrieval attention where an attention head only attends to one token in the sentence rather than all tokens. The matrix multiplication between attention probabilities and the value sequence in the standard scaled dot-product attention can thus be replaced by a simple and efficient retrieval operation. We show that our hard retrieval attention mechanism is 1.43 times faster in decoding, while preserving translation quality on a wide range of machine translation tasks when used in the decoder self- and cross-attention networks.

pdf bib
Self-Supervised Curriculum Learning for Spelling Error Correction
Zifa Gan | Hongfei Xu | Hongying Zan
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Spelling Error Correction (SEC) that requires high-level language understanding is a challenging but useful task. Current SEC approaches normally leverage a pre-training then fine-tuning procedure that treats data equally. By contrast, Curriculum Learning (CL) utilizes training data differently during training and has shown its effectiveness in improving both performance and training efficiency in many other NLP tasks. In NMT, a model’s performance has been shown sensitive to the difficulty of training examples, and CL has been shown effective to address this. In SEC, the data from different language learners are naturally distributed at different difficulty levels (some errors made by beginners are obvious to correct while some made by fluent speakers are hard), and we expect that designing a curriculum correspondingly for model learning may also help its training and bring about better performance. In this paper, we study how to further improve the performance of the state-of-the-art SEC method with CL, and propose a Self-Supervised Curriculum Learning (SSCL) approach. Specifically, we directly use the cross-entropy loss as criteria for: 1) scoring the difficulty of training data, and 2) evaluating the competence of the model. In our approach, CL improves the model training, which in return improves the CL measurement. In our experiments on the SIGHAN 2015 Chinese spelling check task, we show that SSCL is superior to previous norm-based and uncertainty-aware approaches, and establish a new state of the art (74.38% F1).

pdf bib
Probing Word Translations in the Transformer and Trading Decoder for Encoder Layers
Hongfei Xu | Josef van Genabith | Qiuhui Liu | Deyi Xiong
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Due to its effectiveness and performance, the Transformer translation model has attracted wide attention, most recently in terms of probing-based approaches. Previous work focuses on using or probing source linguistic features in the encoder. To date, the way word translation evolves in Transformer layers has not yet been investigated. Naively, one might assume that encoder layers capture source information while decoder layers translate. In this work, we show that this is not quite the case: translation already happens progressively in encoder layers and even in the input embeddings. More surprisingly, we find that some of the lower decoder layers do not actually do that much decoding. We show all of this in terms of a probing approach where we project representations of the layer analyzed to the final trained and frozen classifier level of the Transformer decoder to measure word translation accuracy. Our findings motivate and explain a Transformer configuration change: if translation already happens in the encoder layers, perhaps we can increase the number of encoder layers, while decreasing the number of decoder layers, boosting decoding speed, without loss in translation quality? Our experiments show that this is indeed the case: we can increase speed by up to a factor 2.3 with small gains in translation quality, while an 18-4 deep encoder configuration boosts translation quality by +1.42 BLEU (En-De) at a speed-up of 1.4.

pdf bib
Multi-Head Highly Parallelized LSTM Decoder for Neural Machine Translation
Hongfei Xu | Qiuhui Liu | Josef van Genabith | Deyi Xiong | Meng Zhang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

One of the reasons Transformer translation models are popular is that self-attention networks for context modelling can be easily parallelized at sequence level. However, the computational complexity of a self-attention network is O(n2), increasing quadratically with sequence length. By contrast, the complexity of LSTM-based approaches is only O(n). In practice, however, LSTMs are much slower to train than self-attention networks as they cannot be parallelized at sequence level: to model context, the current LSTM state relies on the full LSTM computation of the preceding state. This has to be computed n times for a sequence of length n. The linear transformations involved in the LSTM gate and state computations are the major cost factors in this. To enable sequence-level parallelization of LSTMs, we approximate full LSTM context modelling by computing hidden states and gates with the current input and a simple bag-of-words representation of the preceding tokens context. This allows us to compute each input step efficiently in parallel, avoiding the formerly costly sequential linear transformations. We then connect the outputs of each parallel step with computationally cheap element-wise computations. We call this the Highly Parallelized LSTM. To further constrain the number of LSTM parameters, we compute several small HPLSTMs in parallel like multi-head attention in the Transformer. The experiments show that our MHPLSTM decoder achieves significant BLEU improvements, while being even slightly faster than the self-attention network in training, and much faster than the standard LSTM.

pdf bib
Modeling Task-Aware MIMO Cardinality for Efficient Multilingual Neural Machine Translation
Hongfei Xu | Qiuhui Liu | Josef van Genabith | Deyi Xiong
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Neural machine translation has achieved great success in bilingual settings, as well as in multilingual settings. With the increase of the number of languages, multilingual systems tend to underperform their bilingual counterparts. Model capacity has been found crucial for massively multilingual NMT to support language pairs with varying typological characteristics. Previous work increases the modeling capacity by deepening or widening the Transformer. However, modeling cardinality based on aggregating a set of transformations with the same topology has been proven more effective than going deeper or wider when increasing capacity. In this paper, we propose to efficiently increase the capacity for multilingual NMT by increasing the cardinality. Unlike previous work which feeds the same input to several transformations and merges their outputs into one, we present a Multi-Input-Multi-Output (MIMO) architecture that allows each transformation of the block to have its own input. We also present a task-aware attention mechanism to learn to selectively utilize individual transformations from a set of transformations for different translation directions. Our model surpasses previous work and establishes a new state-of-the-art on the large scale OPUS-100 corpus while being 1.31 times as fast.

2020

pdf bib
Learning Source Phrase Representations for Neural Machine Translation
Hongfei Xu | Josef van Genabith | Deyi Xiong | Qiuhui Liu | Jingyi Zhang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

The Transformer translation model (Vaswani et al., 2017) based on a multi-head attention mechanism can be computed effectively in parallel and has significantly pushed forward the performance of Neural Machine Translation (NMT). Though intuitively the attentional network can connect distant words via shorter network paths than RNNs, empirical analysis demonstrates that it still has difficulty in fully capturing long-distance dependencies (Tang et al., 2018). Considering that modeling phrases instead of words has significantly improved the Statistical Machine Translation (SMT) approach through the use of larger translation blocks (“phrases”) and its reordering ability, modeling NMT at phrase level is an intuitive proposal to help the model capture long-distance relationships. In this paper, we first propose an attentive phrase representation generation mechanism which is able to generate phrase representations from corresponding token representations. In addition, we incorporate the generated phrase representations into the Transformer translation model to enhance its ability to capture long-distance relationships. In our experiments, we obtain significant improvements on the WMT 14 English-German and English-French tasks on top of the strong Transformer baseline, which shows the effectiveness of our approach. Our approach helps Transformer Base models perform at the level of Transformer Big models, and even significantly better for long sentences, but with substantially fewer parameters and training steps. The fact that phrase representations help even in the big setting further supports our conjecture that they make a valuable contribution to long-distance relations.

pdf bib
Lipschitz Constrained Parameter Initialization for Deep Transformers
Hongfei Xu | Qiuhui Liu | Josef van Genabith | Deyi Xiong | Jingyi Zhang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

The Transformer translation model employs residual connection and layer normalization to ease the optimization difficulties caused by its multi-layer encoder/decoder structure. Previous research shows that even with residual connection and layer normalization, deep Transformers still have difficulty in training, and particularly Transformer models with more than 12 encoder/decoder layers fail to converge. In this paper, we first empirically demonstrate that a simple modification made in the official implementation, which changes the computation order of residual connection and layer normalization, can significantly ease the optimization of deep Transformers. We then compare the subtle differences in computation order in considerable detail, and present a parameter initialization method that leverages the Lipschitz constraint on the initialization of Transformer parameters that effectively ensures training convergence. In contrast to findings in previous research we further demonstrate that with Lipschitz parameter initialization, deep Transformers with the original computation order can converge, and obtain significant BLEU improvements with up to 24 layers. In contrast to previous research which focuses on deep encoders, our approach additionally enables Transformers to also benefit from deep decoders.

pdf bib
Dynamically Adjusting Transformer Batch Size by Monitoring Gradient Direction Change
Hongfei Xu | Josef van Genabith | Deyi Xiong | Qiuhui Liu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

The choice of hyper-parameters affects the performance of neural models. While much previous research (Sutskever et al., 2013; Duchi et al., 2011; Kingma and Ba, 2015) focuses on accelerating convergence and reducing the effects of the learning rate, comparatively few papers concentrate on the effect of batch size. In this paper, we analyze how increasing batch size affects gradient direction, and propose to evaluate the stability of gradients with their angle change. Based on our observations, the angle change of gradient direction first tends to stabilize (i.e. gradually decrease) while accumulating mini-batches, and then starts to fluctuate. We propose to automatically and dynamically determine batch sizes by accumulating gradients of mini-batches and performing an optimization step at just the time when the direction of gradients starts to fluctuate. To improve the efficiency of our approach for large models, we propose a sampling approach to select gradients of parameters sensitive to the batch size. Our approach dynamically determines proper and efficient batch sizes during training. In our experiments on the WMT 14 English to German and English to French tasks, our approach improves the Transformer with a fixed 25k batch size by +0.73 and +0.82 BLEU respectively.

pdf bib
The Transference Architecture for Automatic Post-Editing
Santanu Pal | Hongfei Xu | Nico Herbig | Sudip Kumar Naskar | Antonio Krüger | Josef van Genabith
Proceedings of the 28th International Conference on Computational Linguistics

In automatic post-editing (APE) it makes sense to condition post-editing (pe) decisions on both the source (src) and the machine translated text (mt) as input. This has led to multi-encoder based neural APE approaches. A research challenge now is the search for architectures that best support the capture, preparation and provision of src and mt information and its integration with pe decisions. In this paper we present an efficient multi-encoder based APE model, called transference. Unlike previous approaches, it (i) uses a transformer encoder block for src, (ii) followed by a decoder block, but without masking for self-attention on mt, which effectively acts as second encoder combining src –> mt, and (iii) feeds this representation into a final decoder block generating pe. Our model outperforms the best performing systems by 1 BLEU point on the WMT 2016, 2017, and 2018 English–German APE shared tasks (PBSMT and NMT). Furthermore, the results of our model on the WMT 2019 APE task using NMT data shows a comparable performance to the state-of-the-art system. The inference time of our model is similar to the vanilla transformer-based NMT system although our model deals with two separate encoders. We further investigate the importance of our newly introduced second encoder and find that a too small amount of layers does hurt the performance, while reducing the number of layers of the decoder does not matter much.

2019

pdf bib
USAAR-DFKI – The Transference Architecture for English–German Automatic Post-Editing
Santanu Pal | Hongfei Xu | Nico Herbig | Antonio Krüger | Josef van Genabith
Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2)

In this paper we present an English–German Automatic Post-Editing (APE) system called transference, submitted to the APE Task organized at WMT 2019. Our transference model is based on a multi-encoder transformer architecture. Unlike previous approaches, it (i) uses a transformer encoder block for src, (ii) followed by a transformer decoder block, but without masking, for self-attention on mt, which effectively acts as second encoder combining src –> mt, and (iii) feeds this representation into a final decoder block generating pe. Our model improves over the raw black-box neural machine translation system by 0.9 and 1.0 absolute BLEU points on the WMT 2019 APE development and test set. Our submission ranked 3rd, however compared to the two top systems, performance differences are not statistically significant.

pdf bib
UdS Submission for the WMT 19 Automatic Post-Editing Task
Hongfei Xu | Qiuhui Liu | Josef van Genabith
Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2)

In this paper, we describe our submission to the English-German APE shared task at WMT 2019. We utilize and adapt an NMT architecture originally developed for exploiting context information to APE, implement this in our own transformer model and explore joint training of the APE task with a de-noising encoder.