Hongming Zhang


2022

pdf bib
Rare and Zero-shot Word Sense Disambiguation using Z-Reweighting
Ying Su | Hongming Zhang | Yangqiu Song | Tong Zhang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Word sense disambiguation (WSD) is a crucial problem in the natural language processing (NLP) community. Current methods achieve decent performance by utilizing supervised learning and large pre-trained language models. However, the imbalanced training dataset leads to poor performance on rare senses and zero-shot senses. There are more training instances and senses for words with top frequency ranks than those with low frequency ranks in the training dataset. We investigate the statistical relation between word frequency rank and word sense number distribution. Based on the relation, we propose a Z-reweighting method on the word level to adjust the training on the imbalanced dataset. The experiments show that the Z-reweighting strategy achieves performance gain on the standard English all words WSD benchmark. Moreover, the strategy can help models generalize better on rare and zero-shot senses.

pdf bib
CoCoLM: Complex Commonsense Enhanced Language Model with Discourse Relations
Changlong Yu | Hongming Zhang | Yangqiu Song | Wilfred Ng
Findings of the Association for Computational Linguistics: ACL 2022

Large-scale pre-trained language models have demonstrated strong knowledge representation ability. However, recent studies suggest that even though these giant models contain rich simple commonsense knowledge (e.g., bird can fly and fish can swim.), they often struggle with complex commonsense knowledge that involves multiple eventualities (verb-centric phrases, e.g., identifying the relationship between “Jim yells at Bob” and “Bob is upset”). To address this issue, in this paper, we propose to help pre-trained language models better incorporate complex commonsense knowledge. Unlike direct fine-tuning approaches, we do not focus on a specific task and instead propose a general language model named CoCoLM. Through the careful training over a large-scale eventuality knowledge graph ASER, we successfully teach pre-trained language models (i.e., BERT and RoBERTa) rich multi-hop commonsense knowledge among eventualities.Experiments on multiple commonsense tasks that require the correct understanding of eventualities demonstrate the effectiveness of CoCoLM.

2021

pdf bib
A Brief Survey and Comparative Study of Recent Development of Pronoun Coreference Resolution in English
Hongming Zhang | Xinran Zhao | Yangqiu Song
Proceedings of the Fourth Workshop on Computational Models of Reference, Anaphora and Coreference

Pronoun Coreference Resolution (PCR) is the task of resolving pronominal expressions to all mentions they refer to. Compared with the general coreference resolution task, the main challenge of PCR is the coreference relation prediction rather than the mention detection. As one important natural language understanding (NLU) component, pronoun resolution is crucial for many downstream tasks and still challenging for existing models, which motivates us to survey existing approaches and think about how to do better. In this survey, we first introduce representative datasets and models for the ordinary pronoun coreference resolution task. Then we focus on recent progress on hard pronoun coreference resolution problems (e.g., Winograd Schema Challenge) to analyze how well current models can understand commonsense. We conduct extensive experiments to show that even though current models are achieving good performance on the standard evaluation set, they are still not ready to be used in real applications (e.g., all SOTA models struggle on correctly resolving pronouns to infrequent objects). All experiment codes will be available upon acceptance.

pdf bib
Exophoric Pronoun Resolution in Dialogues with Topic Regularization
Xintong Yu | Hongming Zhang | Yangqiu Song | Changshui Zhang | Kun Xu | Dong Yu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Resolving pronouns to their referents has long been studied as a fundamental natural language understanding problem. Previous works on pronoun coreference resolution (PCR) mostly focus on resolving pronouns to mentions in text while ignoring the exophoric scenario. Exophoric pronouns are common in daily communications, where speakers may directly use pronouns to refer to some objects present in the environment without introducing the objects first. Although such objects are not mentioned in the dialogue text, they can often be disambiguated by the general topics of the dialogue. Motivated by this, we propose to jointly leverage the local context and global topics of dialogues to solve the out-of-text PCR problem. Extensive experiments demonstrate the effectiveness of adding topic regularization for resolving exophoric pronouns.

pdf bib
Learning Constraints and Descriptive Segmentation for Subevent Detection
Haoyu Wang | Hongming Zhang | Muhao Chen | Dan Roth
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Event mentions in text correspond to real-world events of varying degrees of granularity. The task of subevent detection aims to resolve this granularity issue, recognizing the membership of multi-granular events in event complexes. Since knowing the span of descriptive contexts of event complexes helps infer the membership of events, we propose the task of event-based text segmentation (EventSeg) as an auxiliary task to improve the learning for subevent detection. To bridge the two tasks together, we propose an approach to learning and enforcing constraints that capture dependencies between subevent detection and EventSeg prediction, as well as guiding the model to make globally consistent inference. Specifically, we adopt Rectifier Networks for constraint learning and then convert the learned constraints to a regularization term in the loss function of the neural model. Experimental results show that the proposed method outperforms baseline methods by 2.3% and 2.5% on benchmark datasets for subevent detection, HiEve and IC, respectively, while achieving a decent performance on EventSeg prediction.

pdf bib
Benchmarking Commonsense Knowledge Base Population with an Effective Evaluation Dataset
Tianqing Fang | Weiqi Wang | Sehyun Choi | Shibo Hao | Hongming Zhang | Yangqiu Song | Bin He
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Reasoning over commonsense knowledge bases (CSKB) whose elements are in the form of free-text is an important yet hard task in NLP. While CSKB completion only fills the missing links within the domain of the CSKB, CSKB population is alternatively proposed with the goal of reasoning unseen assertions from external resources. In this task, CSKBs are grounded to a large-scale eventuality (activity, state, and event) graph to discriminate whether novel triples from the eventuality graph are plausible or not. However, existing evaluations on the population task are either not accurate (automatic evaluation with randomly sampled negative examples) or of small scale (human annotation). In this paper, we benchmark the CSKB population task with a new large-scale dataset by first aligning four popular CSKBs, and then presenting a high-quality human-annotated evaluation set to probe neural models’ commonsense reasoning ability. We also propose a novel inductive commonsense reasoning model that reasons over graphs. Experimental results show that generalizing commonsense reasoning on unseen assertions is inherently a hard task. Models achieving high accuracy during training perform poorly on the evaluation set, with a large gap between human performance. We will make the data publicly available for future contributions. Codes and data are available at https://github.com/HKUST-KnowComp/CSKB-Population.

pdf bib
Back to Square One: Artifact Detection, Training and Commonsense Disentanglement in the Winograd Schema
Yanai Elazar | Hongming Zhang | Yoav Goldberg | Dan Roth
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The Winograd Schema (WS) has been proposed as a test for measuring commonsense capabilities of models. Recently, pre-trained language model-based approaches have boosted performance on some WS benchmarks but the source of improvement is still not clear. This paper suggests that the apparent progress on WS may not necessarily reflect progress in commonsense reasoning. To support this claim, we first show that the current evaluation method of WS is sub-optimal and propose a modification that uses twin sentences for evaluation. We also propose two new baselines that indicate the existence of artifacts in WS benchmarks. We then develop a method for evaluating WS-like sentences in a zero-shot setting to account for the commonsense reasoning abilities acquired during the pretraining and observe that popular language models perform randomly in this setting when using our more strict evaluation. We conclude that the observed progress is mostly due to the use of supervision in training WS models, which is not likely to successfully support all the required commonsense reasoning skills and knowledge.

pdf bib
Zero-shot Label-Aware Event Trigger and Argument Classification
Hongming Zhang | Haoyu Wang | Dan Roth
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Leveraging Topic Relatedness for Argument Persuasion
Xinran Zhao | Esin Durmus | Hongming Zhang | Claire Cardie
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
RESIN: A Dockerized Schema-Guided Cross-document Cross-lingual Cross-media Information Extraction and Event Tracking System
Haoyang Wen | Ying Lin | Tuan Lai | Xiaoman Pan | Sha Li | Xudong Lin | Ben Zhou | Manling Li | Haoyu Wang | Hongming Zhang | Xiaodong Yu | Alexander Dong | Zhenhailong Wang | Yi Fung | Piyush Mishra | Qing Lyu | Dídac Surís | Brian Chen | Susan Windisch Brown | Martha Palmer | Chris Callison-Burch | Carl Vondrick | Jiawei Han | Dan Roth | Shih-Fu Chang | Heng Ji
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations

We present a new information extraction system that can automatically construct temporal event graphs from a collection of news documents from multiple sources, multiple languages (English and Spanish for our experiment), and multiple data modalities (speech, text, image and video). The system advances state-of-the-art from two aspects: (1) extending from sentence-level event extraction to cross-document cross-lingual cross-media event extraction, coreference resolution and temporal event tracking; (2) using human curated event schema library to match and enhance the extraction output. We have made the dockerlized system publicly available for research purpose at GitHub, with a demo video.

pdf bib
Joint Coreference Resolution and Character Linking for Multiparty Conversation
Jiaxin Bai | Hongming Zhang | Yangqiu Song | Kun Xu
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Character linking, the task of linking mentioned people in conversations to the real world, is crucial for understanding the conversations. For the efficiency of communication, humans often choose to use pronouns (e.g., “she”) or normal entities (e.g., “that girl”) rather than named entities (e.g., “Rachel”) in the spoken language, which makes linking those mentions to real people a much more challenging than a regular entity linking task. To address this challenge, we propose to incorporate the richer context from the coreference relations among different mentions to help the linking. On the other hand, considering that finding coreference clusters itself is not a trivial task and could benefit from the global character information, we propose to jointly solve these two tasks. Specifically, we propose Cˆ2, the joint learning model of Coreference resolution and Character linking. The experimental results demonstrate that Cˆ2 can significantly outperform previous works on both tasks. Further analyses are conducted to analyze the contribution of all modules in the proposed model and the effect of all hyper-parameters.

pdf bib
Zero-shot Event Extraction via Transfer Learning: Challenges and Insights
Qing Lyu | Hongming Zhang | Elior Sulem | Dan Roth
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Event extraction has long been a challenging task, addressed mostly with supervised methods that require expensive annotation and are not extensible to new event ontologies. In this work, we explore the possibility of zero-shot event extraction by formulating it as a set of Textual Entailment (TE) and/or Question Answering (QA) queries (e.g. “A city was attacked” entails “There is an attack”), exploiting pretrained TE/QA models for direct transfer. On ACE-2005 and ERE, our system achieves acceptable results, yet there is still a large gap from supervised approaches, showing that current QA and TE technologies fail in transferring to a different domain. To investigate the reasons behind the gap, we analyze the remaining key challenges, their respective impact, and possible improvement directions.

pdf bib
Event-Centric Natural Language Processing
Muhao Chen | Hongming Zhang | Qiang Ning | Manling Li | Heng Ji | Kathleen McKeown | Dan Roth
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Tutorial Abstracts

This tutorial targets researchers and practitioners who are interested in AI technologies that help machines understand natural language text, particularly real-world events described in the text. These include methods to extract the internal structures of an event regarding its protagonist(s), participant(s) and properties, as well as external structures concerning memberships, temporal and causal relations of multiple events. This tutorial will provide audience with a systematic introduction of (i) knowledge representations of events, (ii) various methods for automated extraction, conceptualization and prediction of events and their relations, (iii) induction of event processes and properties, and (iv) a wide range of NLU and commonsense understanding tasks that benefit from aforementioned techniques. We will conclude the tutorial by outlining emerging research problems in this area.

2020

pdf bib
WinoWhy: A Deep Diagnosis of Essential Commonsense Knowledge for Answering Winograd Schema Challenge
Hongming Zhang | Xinran Zhao | Yangqiu Song
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In this paper, we present the first comprehensive categorization of essential commonsense knowledge for answering the Winograd Schema Challenge (WSC). For each of the questions, we invite annotators to first provide reasons for making correct decisions and then categorize them into six major knowledge categories. By doing so, we better understand the limitation of existing methods (i.e., what kind of knowledge cannot be effectively represented or inferred with existing methods) and shed some light on the commonsense knowledge that we need to acquire in the future for better commonsense reasoning. Moreover, to investigate whether current WSC models can understand the commonsense or they simply solve the WSC questions based on the statistical bias of the dataset, we leverage the collected reasons to develop a new task called WinoWhy, which requires models to distinguish plausible reasons from very similar but wrong reasons for all WSC questions. Experimental results prove that even though pre-trained language representation models have achieved promising progress on the original WSC dataset, they are still struggling at WinoWhy. Further experiments show that even though supervised models can achieve better performance, the performance of these models can be sensitive to the dataset distribution. WinoWhy and all codes are available at: https://github.com/HKUST-KnowComp/WinoWhy.

pdf bib
Joint Constrained Learning for Event-Event Relation Extraction
Haoyu Wang | Muhao Chen | Hongming Zhang | Dan Roth
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Understanding natural language involves recognizing how multiple event mentions structurally and temporally interact with each other. In this process, one can induce event complexes that organize multi-granular events with temporal order and membership relations interweaving among them. Due to the lack of jointly labeled data for these relational phenomena and the restriction on the structures they articulate, we propose a joint constrained learning framework for modeling event-event relations. Specifically, the framework enforces logical constraints within and across multiple temporal and subevent relations of events by converting these constraints into differentiable learning objectives. We show that our joint constrained learning approach effectively compensates for the lack of jointly labeled data, and outperforms SOTA methods on benchmarks for both temporal relation extraction and event hierarchy construction, replacing a commonly used but more expensive global inference process. We also present a promising case study to show the effectiveness of our approach to inducing event complexes on an external corpus.

pdf bib
Analogous Process Structure Induction for Sub-event Sequence Prediction
Hongming Zhang | Muhao Chen | Haoyu Wang | Yangqiu Song | Dan Roth
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Computational and cognitive studies of event understanding suggest that identifying, comprehending, and predicting events depend on having structured representations of a sequence of events and on conceptualizing (abstracting) its components into (soft) event categories. Thus, knowledge about a known process such as “buying a car” can be used in the context of a new but analogous process such as “buying a house”. Nevertheless, most event understanding work in NLP is still at the ground level and does not consider abstraction. In this paper, we propose an Analogous Process Structure Induction (APSI) framework, which leverages analogies among processes and conceptualization of sub-event instances to predict the whole sub-event sequence of previously unseen open-domain processes. As our experiments and analysis indicate, APSI supports the generation of meaningful sub-event sequences for unseen processes and can help predict missing events.

pdf bib
When Hearst Is not Enough: Improving Hypernymy Detection from Corpus with Distributional Models
Changlong Yu | Jialong Han | Peifeng Wang | Yangqiu Song | Hongming Zhang | Wilfred Ng | Shuming Shi
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We address hypernymy detection, i.e., whether an is-a relationship exists between words (x ,y), with the help of large textual corpora. Most conventional approaches to this task have been categorized to be either pattern-based or distributional. Recent studies suggest that pattern-based ones are superior, if large-scale Hearst pairs are extracted and fed, with the sparsity of unseen (x ,y) pairs relieved. However, they become invalid in some specific sparsity cases, where x or y is not involved in any pattern. For the first time, this paper quantifies the non-negligible existence of those specific cases. We also demonstrate that distributional methods are ideal to make up for pattern-based ones in such cases. We devise a complementary framework, under which a pattern-based and a distributional model collaborate seamlessly in cases which they each prefer. On several benchmark datasets, our framework demonstrates improvements that are both competitive and explainable.

pdf bib
What Are You Trying to Do? Semantic Typing of Event Processes
Muhao Chen | Hongming Zhang | Haoyu Wang | Dan Roth
Proceedings of the 24th Conference on Computational Natural Language Learning

This paper studies a new cognitively motivated semantic typing task,multi-axis event process typing, that, given anevent process, attempts to infer free-form typelabels describing (i) the type of action made bythe process and (ii) the type of object the pro-cess seeks to affect. This task is inspired bycomputational and cognitive studies of eventunderstanding, which suggest that understand-ing processes of events is often directed by rec-ognizing the goals, plans or intentions of theprotagonist(s). We develop a large dataset con-taining over 60k event processes, featuring ul-tra fine-grained typing on both the action andobject type axes with very large (10ˆ3∼10ˆ4)label vocabularies. We then propose a hybridlearning framework,P2GT, which addressesthe challenging typing problem with indirectsupervision from glosses1and a joint learning-to-rank framework. As our experiments indi-cate,P2GTsupports identifying the intent ofprocesses, as well as the fine semantic type ofthe affected object. It also demonstrates the ca-pability of handling few-shot cases, and stronggeneralizability on out-of-domain processes.

2019

pdf bib
Multilingual and Multi-Aspect Hate Speech Analysis
Nedjma Ousidhoum | Zizheng Lin | Hongming Zhang | Yangqiu Song | Dit-Yan Yeung
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Current research on hate speech analysis is typically oriented towards monolingual and single classification tasks. In this paper, we present a new multilingual multi-aspect hate speech analysis dataset and use it to test the current state-of-the-art multilingual multitask learning approaches. We evaluate our dataset in various classification settings, then we discuss how to leverage our annotations in order to improve hate speech detection and classification in general.

pdf bib
What You See is What You Get: Visual Pronoun Coreference Resolution in Dialogues
Xintong Yu | Hongming Zhang | Yangqiu Song | Yan Song | Changshui Zhang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Grounding a pronoun to a visual object it refers to requires complex reasoning from various information sources, especially in conversational scenarios. For example, when people in a conversation talk about something all speakers can see, they often directly use pronouns (e.g., it) to refer to it without previous introduction. This fact brings a huge challenge for modern natural language understanding systems, particularly conventional context-based pronoun coreference models. To tackle this challenge, in this paper, we formally define the task of visual-aware pronoun coreference resolution (PCR) and introduce VisPro, a large-scale dialogue PCR dataset, to investigate whether and how the visual information can help resolve pronouns in dialogues. We then propose a novel visual-aware PCR model, VisCoref, for this task and conduct comprehensive experiments and case studies on our dataset. Results demonstrate the importance of the visual information in this PCR case and show the effectiveness of the proposed model.

pdf bib
Multiplex Word Embeddings for Selectional Preference Acquisition
Hongming Zhang | Jiaxin Bai | Yan Song | Kun Xu | Changlong Yu | Yangqiu Song | Wilfred Ng | Dong Yu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Conventional word embeddings represent words with fixed vectors, which are usually trained based on co-occurrence patterns among words. In doing so, however, the power of such representations is limited, where the same word might be functionalized separately under different syntactic relations. To address this limitation, one solution is to incorporate relational dependencies of different words into their embeddings. Therefore, in this paper, we propose a multiplex word embedding model, which can be easily extended according to various relations among words. As a result, each word has a center embedding to represent its overall semantics, and several relational embeddings to represent its relational dependencies. Compared to existing models, our model can effectively distinguish words with respect to different relations without introducing unnecessary sparseness. Moreover, to accommodate various relations, we use a small dimension for relational embeddings and our model is able to keep their effectiveness. Experiments on selectional preference acquisition and word similarity demonstrate the effectiveness of the proposed model, and a further study of scalability also proves that our embeddings only need 1/20 of the original embedding size to achieve better performance.

pdf bib
SP-10K: A Large-scale Evaluation Set for Selectional Preference Acquisition
Hongming Zhang | Hantian Ding | Yangqiu Song
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Selectional Preference (SP) is a commonly observed language phenomenon and proved to be useful in many natural language processing tasks. To provide a better evaluation method for SP models, we introduce SP-10K, a large-scale evaluation set that provides human ratings for the plausibility of 10,000 SP pairs over five SP relations, covering 2,500 most frequent verbs, nouns, and adjectives in American English. Three representative SP acquisition methods based on pseudo-disambiguation are evaluated with SP-10K. To demonstrate the importance of our dataset, we investigate the relationship between SP-10K and the commonsense knowledge in ConceptNet5 and show the potential of using SP to represent the commonsense knowledge. We also use the Winograd Schema Challenge to prove that the proposed new SP relations are essential for the hard pronoun coreference resolution problem.

pdf bib
Knowledge-aware Pronoun Coreference Resolution
Hongming Zhang | Yan Song | Yangqiu Song | Dong Yu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Resolving pronoun coreference requires knowledge support, especially for particular domains (e.g., medicine). In this paper, we explore how to leverage different types of knowledge to better resolve pronoun coreference with a neural model. To ensure the generalization ability of our model, we directly incorporate knowledge in the format of triplets, which is the most common format of modern knowledge graphs, instead of encoding it with features or rules as that in conventional approaches. Moreover, since not all knowledge is helpful in certain contexts, to selectively use them, we propose a knowledge attention module, which learns to select and use informative knowledge based on contexts, to enhance our model. Experimental results on two datasets from different domains prove the validity and effectiveness of our model, where it outperforms state-of-the-art baselines by a large margin. Moreover, since our model learns to use external knowledge rather than only fitting the training data, it also demonstrates superior performance to baselines in the cross-domain setting.

pdf bib
Incorporating Context and External Knowledge for Pronoun Coreference Resolution
Hongming Zhang | Yan Song | Yangqiu Song
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Linking pronominal expressions to the correct references requires, in many cases, better analysis of the contextual information and external knowledge. In this paper, we propose a two-layer model for pronoun coreference resolution that leverages both context and external knowledge, where a knowledge attention mechanism is designed to ensure the model leveraging the appropriate source of external knowledge based on different context. Experimental results demonstrate the validity and effectiveness of our model, where it outperforms state-of-the-art models by a large margin.