Hongxuan Tang
2022
A Fine-grained Interpretability Evaluation Benchmark for Neural NLP
Lijie Wang
|
Yaozong Shen
|
Shuyuan Peng
|
Shuai Zhang
|
Xinyan Xiao
|
Hao Liu
|
Hongxuan Tang
|
Ying Chen
|
Hua Wu
|
Haifeng Wang
Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)
While there is increasing concern about the interpretability of neural models, the evaluation of interpretability remains an open problem, due to the lack of proper evaluation datasets and metrics. In this paper, we present a novel benchmark to evaluate the interpretability of both neural models and saliency methods. This benchmark covers three representative NLP tasks: sentiment analysis, textual similarity and reading comprehension, each provided with both English and Chinese annotated data. In order to precisely evaluate the interpretability, we provide token-level rationales that are carefully annotated to be sufficient, compact and comprehensive. We also design a new metric, i.e., the consistency between the rationales before and after perturbations, to uniformly evaluate the interpretability on different types of tasks. Based on this benchmark, we conduct experiments on three typical models with three saliency methods, and unveil their strengths and weakness in terms of interpretability. We will release this benchmark (https://www.luge.ai/#/luge/task/taskDetail?taskId=15) and hope it can facilitate the research in building trustworthy systems.
2021
DuReader_robust: A Chinese Dataset Towards Evaluating Robustness and Generalization of Machine Reading Comprehension in Real-World Applications
Hongxuan Tang
|
Hongyu Li
|
Jing Liu
|
Yu Hong
|
Hua Wu
|
Haifeng Wang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
Machine reading comprehension (MRC) is a crucial task in natural language processing and has achieved remarkable advancements. However, most of the neural MRC models are still far from robust and fail to generalize well in real-world applications. In order to comprehensively verify the robustness and generalization of MRC models, we introduce a real-world Chinese dataset – DuReader_robust . It is designed to evaluate the MRC models from three aspects: over-sensitivity, over-stability and generalization. Comparing to previous work, the instances in DuReader_robust are natural texts, rather than the altered unnatural texts. It presents the challenges when applying MRC models to real-world applications. The experimental results show that MRC models do not perform well on the challenge test set. Moreover, we analyze the behavior of existing models on the challenge test set, which may provide suggestions for future model development. The dataset and codes are publicly available at https://github.com/baidu/DuReader.