Hongyu Lin


2022

pdf bib
ECO v1: Towards Event-Centric Opinion Mining
Ruoxi Xu | Hongyu Lin | Meng Liao | Xianpei Han | Jin Xu | Wei Tan | Yingfei Sun | Le Sun
Findings of the Association for Computational Linguistics: ACL 2022

Events are considered as the fundamental building blocks of the world. Mining event-centric opinions can benefit decision making, people communication, and social good. Unfortunately, there is little literature addressing event-centric opinion mining, although which significantly diverges from the well-studied entity-centric opinion mining in connotation, structure, and expression. In this paper, we propose and formulate the task of event-centric opinion mining based on event-argument structure and expression categorizing theory. We also benchmark this task by constructing a pioneer corpus and designing a two-step benchmark framework. Experiment results show that event-centric opinion mining is feasible and challenging, and the proposed task, dataset, and baselines are beneficial for future studies.

pdf bib
CATAMARAN: A Cross-lingual Long Text Abstractive Summarization Dataset
Zheng Chen | Hongyu Lin
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Cross-lingual summarization, which produces the summary in one language from a given source document in another language, could be extremely helpful for humans to obtain information across the world. However, it is still a little-explored task due to the lack of datasets. Recent studies are primarily based on pseudo-cross-lingual datasets obtained by translation. Such an approach would inevitably lead to the loss of information in the original document and introduce noise into the summary, thus hurting the overall performance. In this paper, we present CATAMARAN, the first high-quality cross-lingual long text abstractive summarization dataset. It contains about 20,000 parallel news articles and corresponding summaries, all written by humans. The average lengths of articles are 1133.65 for English articles and 2035.33 for Chinese articles, and the average lengths of the summaries are 26.59 and 70.05, respectively. We train and evaluate an mBART-based cross-lingual abstractive summarization model using our dataset. The result shows that, compared with mono-lingual systems, the cross-lingual abstractive summarization system could also achieve solid performance.

pdf bib
ISCAS at SemEval-2022 Task 10: An Extraction-Validation Pipeline for Structured Sentiment Analysis
Xinyu Lu | Mengjie Ren | Yaojie Lu | Hongyu Lin
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

ISCAS participated in both sub-tasks in SemEval-2022 Task 10: Structured Sentiment competition. We design an extraction-validation pipeline architecture to tackle both monolingual and cross-lingual sub-tasks. Experimental results show the multilingual effectiveness and cross-lingual robustness of our system. Our system is openly released on: https://github.com/luxinyu1/SemEval2022-Task10/.

pdf bib
Few-shot Named Entity Recognition with Self-describing Networks
Jiawei Chen | Qing Liu | Hongyu Lin | Xianpei Han | Le Sun
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Few-shot NER needs to effectively capture information from limited instances and transfer useful knowledge from external resources. In this paper, we propose a self-describing mechanism for few-shot NER, which can effectively leverage illustrative instances and precisely transfer knowledge from external resources by describing both entity types and mentions using a universal concept set. Specifically, we design Self-describing Networks (SDNet), a Seq2Seq generation model which can universally describe mentions using concepts, automatically map novel entity types to concepts, and adaptively recognize entities on-demand. We pre-train SDNet with large-scale corpus, and conduct experiments on 8 benchmarks from different domains. Experiments show that SDNet achieves competitive performances on all benchmarks and achieves the new state-of-the-art on 6 benchmarks, which demonstrates its effectiveness and robustness.

pdf bib
Unified Structure Generation for Universal Information Extraction
Yaojie Lu | Qing Liu | Dai Dai | Xinyan Xiao | Hongyu Lin | Xianpei Han | Le Sun | Hua Wu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Information extraction suffers from its varying targets, heterogeneous structures, and demand-specific schemas. In this paper, we propose a unified text-to-structure generation framework, namely UIE, which can universally model different IE tasks, adaptively generate targeted structures, and collaboratively learn general IE abilities from different knowledge sources. Specifically, UIE uniformly encodes different extraction structures via a structured extraction language, adaptively generates target extractions via a schema-based prompt mechanism – structural schema instructor, and captures the common IE abilities via a large-scale pretrained text-to-structure model. Experiments show that UIE achieved the state-of-the-art performance on 4 IE tasks, 13 datasets, and on all supervised, low-resource, and few-shot settings for a wide range of entity, relation, event and sentiment extraction tasks and their unification. These results verified the effectiveness, universality, and transferability of UIE.

pdf bib
Pre-training to Match for Unified Low-shot Relation Extraction
Fangchao Liu | Hongyu Lin | Xianpei Han | Boxi Cao | Le Sun
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Low-shot relation extraction (RE) aims to recognize novel relations with very few or even no samples, which is critical in real scenario application. Few-shot and zero-shot RE are two representative low-shot RE tasks, which seem to be with similar target but require totally different underlying abilities. In this paper, we propose Multi-Choice Matching Networks to unify low-shot relation extraction. To fill in the gap between zero-shot and few-shot RE, we propose the triplet-paraphrase meta-training, which leverages triplet paraphrase to pre-train zero-shot label matching ability and uses meta-learning paradigm to learn few-shot instance summarizing ability. Experimental results on three different low-shot RE tasks show that the proposed method outperforms strong baselines by a large margin, and achieve the best performance on few-shot RE leaderboard.

pdf bib
Can Prompt Probe Pretrained Language Models? Understanding the Invisible Risks from a Causal View
Boxi Cao | Hongyu Lin | Xianpei Han | Fangchao Liu | Le Sun
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Prompt-based probing has been widely used in evaluating the abilities of pretrained language models (PLMs). Unfortunately, recent studies have discovered such an evaluation may be inaccurate, inconsistent and unreliable. Furthermore, the lack of understanding its inner workings, combined with its wide applicability, has the potential to lead to unforeseen risks for evaluating and applying PLMs in real-world applications. To discover, understand and quantify the risks, this paper investigates the prompt-based probing from a causal view, highlights three critical biases which could induce biased results and conclusions, and proposes to conduct debiasing via causal intervention. This paper provides valuable insights for the design of unbiased datasets, better probing frameworks and more reliable evaluations of pretrained language models. Furthermore, our conclusions also echo that we need to rethink the criteria for identifying better pretrained language models.

2021

pdf bib
Fine-grained Entity Typing via Label Reasoning
Qing Liu | Hongyu Lin | Xinyan Xiao | Xianpei Han | Le Sun | Hua Wu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose Label Reasoning Network(LRN), which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

pdf bib
Honey or Poison? Solving the Trigger Curse in Few-shot Event Detection via Causal Intervention
Jiawei Chen | Hongyu Lin | Xianpei Han | Le Sun
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Event detection has long been troubled by the trigger curse: overfitting the trigger will harm the generalization ability while underfitting it will hurt the detection performance. This problem is even more severe in few-shot scenario. In this paper, we identify and solve the trigger curse problem in few-shot event detection (FSED) from a causal view. By formulating FSED with a structural causal model (SCM), we found that the trigger is a confounder of the context and the result, which makes previous FSED methods much easier to overfit triggers. To resolve this problem, we propose to intervene on the context via backdoor adjustment during training. Experiments show that our method significantly improves the FSED on both ACE05 and MAVEN datasets.

pdf bib
From Discourse to Narrative: Knowledge Projection for Event Relation Extraction
Jialong Tang | Hongyu Lin | Meng Liao | Yaojie Lu | Xianpei Han | Le Sun | Weijian Xie | Jin Xu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Current event-centric knowledge graphs highly rely on explicit connectives to mine relations between events. Unfortunately, due to the sparsity of connectives, these methods severely undermine the coverage of EventKGs. The lack of high-quality labelled corpora further exacerbates that problem. In this paper, we propose a knowledge projection paradigm for event relation extraction: projecting discourse knowledge to narratives by exploiting the commonalities between them. Specifically, we propose Multi-tier Knowledge Projection Network (MKPNet), which can leverage multi-tier discourse knowledge effectively for event relation extraction. In this way, the labelled data requirement is significantly reduced, and implicit event relations can be effectively extracted. Intrinsic experimental results show that MKPNet achieves the new state-of-the-art performance and extrinsic experimental results verify the value of the extracted event relations.

pdf bib
Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases
Boxi Cao | Hongyu Lin | Xianpei Han | Le Sun | Lingyong Yan | Meng Liao | Tong Xue | Jin Xu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Previous literatures show that pre-trained masked language models (MLMs) such as BERT can achieve competitive factual knowledge extraction performance on some datasets, indicating that MLMs can potentially be a reliable knowledge source. In this paper, we conduct a rigorous study to explore the underlying predicting mechanisms of MLMs over different extraction paradigms. By investigating the behaviors of MLMs, we find that previous decent performance mainly owes to the biased prompts which overfit dataset artifacts. Furthermore, incorporating illustrative cases and external contexts improve knowledge prediction mainly due to entity type guidance and golden answer leakage. Our findings shed light on the underlying predicting mechanisms of MLMs, and strongly question the previous conclusion that current MLMs can potentially serve as reliable factual knowledge bases.

pdf bib
Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction
Yaojie Lu | Hongyu Lin | Jin Xu | Xianpei Han | Jialong Tang | Annan Li | Le Sun | Meng Liao | Shaoyi Chen
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Event extraction is challenging due to the complex structure of event records and the semantic gap between text and event. Traditional methods usually extract event records by decomposing the complex structure prediction task into multiple subtasks. In this paper, we propose Text2Event, a sequence-to-structure generation paradigm that can directly extract events from the text in an end-to-end manner. Specifically, we design a sequence-to-structure network for unified event extraction, a constrained decoding algorithm for event knowledge injection during inference, and a curriculum learning algorithm for efficient model learning. Experimental results show that, by uniformly modeling all tasks in a single model and universally predicting different labels, our method can achieve competitive performance using only record-level annotations in both supervised learning and transfer learning settings.

pdf bib
Element Intervention for Open Relation Extraction
Fangchao Liu | Lingyong Yan | Hongyu Lin | Xianpei Han | Le Sun
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Open relation extraction aims to cluster relation instances referring to the same underlying relation, which is a critical step for general relation extraction. Current OpenRE models are commonly trained on the datasets generated from distant supervision, which often results in instability and makes the model easily collapsed. In this paper, we revisit the procedure of OpenRE from a causal view. By formulating OpenRE using a structural causal model, we identify that the above-mentioned problems stem from the spurious correlations from entities and context to the relation type. To address this issue, we conduct Element Intervention, which intervene on the context and entities respectively to obtain the underlying causal effects of them. We also provide two specific implementations of the interventions based on entity ranking and context contrasting. Experimental results on unsupervised relation extraction datasets show our method to outperform previous state-of-the-art methods and is robust across different datasets.

pdf bib
De-biasing Distantly Supervised Named Entity Recognition via Causal Intervention
Wenkai Zhang | Hongyu Lin | Xianpei Han | Le Sun
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Distant supervision tackles the data bottleneck in NER by automatically generating training instances via dictionary matching. Unfortunately, the learning of DS-NER is severely dictionary-biased, which suffers from spurious correlations and therefore undermines the effectiveness and the robustness of the learned models. In this paper, we fundamentally explain the dictionary bias via a Structural Causal Model (SCM), categorize the bias into intra-dictionary and inter-dictionary biases, and identify their causes. Based on the SCM, we learn de-biased DS-NER via causal interventions. For intra-dictionary bias, we conduct backdoor adjustment to remove the spurious correlations introduced by the dictionary confounder. For inter-dictionary bias, we propose a causal invariance regularizer which will make DS-NER models more robust to the perturbation of dictionaries. Experiments on four datasets and three DS-NER models show that our method can significantly improve the performance of DS-NER.

2020

pdf bib
ISCAS at SemEval-2020 Task 5: Pre-trained Transformers for Counterfactual Statement Modeling
Yaojie Lu | Annan Li | Hongyu Lin | Xianpei Han | Le Sun
Proceedings of the Fourteenth Workshop on Semantic Evaluation

ISCAS participated in two subtasks of SemEval 2020 Task 5: detecting counterfactual statements and detecting antecedent and consequence. This paper describes our system which is based on pretrained transformers. For the first subtask, we train several transformer-based classifiers for detecting counterfactual statements. For the second subtask, we formulate antecedent and consequence extraction as a query-based question answering problem. The two subsystems both achieved third place in the evaluation. Our system is openly released at https://github.com/casnlu/ISCASSemEval2020Task5.

pdf bib
Syntactic and Semantic-driven Learning for Open Information Extraction
Jialong Tang | Yaojie Lu | Hongyu Lin | Xianpei Han | Le Sun | Xinyan Xiao | Hua Wu
Findings of the Association for Computational Linguistics: EMNLP 2020

One of the biggest bottlenecks in building accurate, high coverage neural open IE systems is the need for large labelled corpora. The diversity of open domain corpora and the variety of natural language expressions further exacerbate this problem. In this paper, we propose a syntactic and semantic-driven learning approach, which can learn neural open IE models without any human-labelled data by leveraging syntactic and semantic knowledge as noisier, higher-level supervision. Specifically, we first employ syntactic patterns as data labelling functions and pretrain a base model using the generated labels. Then we propose a syntactic and semantic-driven reinforcement learning algorithm, which can effectively generalize the base model to open situations with high accuracy. Experimental results show that our approach significantly outperforms the supervised counterparts, and can even achieve competitive performance to supervised state-of-the-art (SoA) model.

pdf bib
A Rigorous Study on Named Entity Recognition: Can Fine-tuning Pretrained Model Lead to the Promised Land?
Hongyu Lin | Yaojie Lu | Jialong Tang | Xianpei Han | Le Sun | Zhicheng Wei | Nicholas Jing Yuan
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Fine-tuning pretrained model has achieved promising performance on standard NER benchmarks. Generally, these benchmarks are blessed with strong name regularity, high mention coverage and sufficient context diversity. Unfortunately, when scaling NER to open situations, these advantages may no longer exist. And therefore it raises a critical question of whether previous creditable approaches can still work well when facing these challenges. As there is no currently available dataset to investigate this problem, this paper proposes to conduct randomization test on standard benchmarks. Specifically, we erase name regularity, mention coverage and context diversity respectively from the benchmarks, in order to explore their impact on the generalization ability of models. To further verify our conclusions, we also construct a new open NER dataset that focuses on entity types with weaker name regularity and lower mention coverage to verify our conclusion. From both randomization test and empirical experiments, we draw the conclusions that 1) name regularity is critical for the models to generalize to unseen mentions; 2) high mention coverage may undermine the model generalization ability and 3) context patterns may not require enormous data to capture when using pretrained encoders.

2019

pdf bib
Gazetteer-Enhanced Attentive Neural Networks for Named Entity Recognition
Hongyu Lin | Yaojie Lu | Xianpei Han | Le Sun | Bin Dong | Shanshan Jiang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Current region-based NER models only rely on fully-annotated training data to learn effective region encoder, which often face the training data bottleneck. To alleviate this problem, this paper proposes Gazetteer-Enhanced Attentive Neural Networks, which can enhance region-based NER by learning name knowledge of entity mentions from easily-obtainable gazetteers, rather than only from fully-annotated data. Specially, we first propose an attentive neural network (ANN), which explicitly models the mention-context association and therefore is convenient for integrating externally-learned knowledge. Then we design an auxiliary gazetteer network, which can effectively encode name regularity of mentions only using gazetteers. Finally, the learned gazetteer network is incorporated into ANN for better NER. Experiments show that our ANN can achieve the state-of-the-art performance on ACE2005 named entity recognition benchmark. Besides, incorporating gazetteer network can further improve the performance and significantly reduce the requirement of training data.

pdf bib
Distilling Discrimination and Generalization Knowledge for Event Detection via Delta-Representation Learning
Yaojie Lu | Hongyu Lin | Xianpei Han | Le Sun
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Event detection systems rely on discrimination knowledge to distinguish ambiguous trigger words and generalization knowledge to detect unseen/sparse trigger words. Current neural event detection approaches focus on trigger-centric representations, which work well on distilling discrimination knowledge, but poorly on learning generalization knowledge. To address this problem, this paper proposes a Delta-learning approach to distill discrimination and generalization knowledge by effectively decoupling, incrementally learning and adaptively fusing event representation. Experiments show that our method significantly outperforms previous approaches on unseen/sparse trigger words, and achieves state-of-the-art performance on both ACE2005 and KBP2017 datasets.

pdf bib
Sequence-to-Nuggets: Nested Entity Mention Detection via Anchor-Region Networks
Hongyu Lin | Yaojie Lu | Xianpei Han | Le Sun
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Sequential labeling-based NER approaches restrict each word belonging to at most one entity mention, which will face a serious problem when recognizing nested entity mentions. In this paper, we propose to resolve this problem by modeling and leveraging the head-driven phrase structures of entity mentions, i.e., although a mention can nest other mentions, they will not share the same head word. Specifically, we propose Anchor-Region Networks (ARNs), a sequence-to-nuggets architecture for nested mention detection. ARNs first identify anchor words (i.e., possible head words) of all mentions, and then recognize the mention boundaries for each anchor word by exploiting regular phrase structures. Furthermore, we also design Bag Loss, an objective function which can train ARNs in an end-to-end manner without using any anchor word annotation. Experiments show that ARNs achieve the state-of-the-art performance on three standard nested entity mention detection benchmarks.

pdf bib
Cost-sensitive Regularization for Label Confusion-aware Event Detection
Hongyu Lin | Yaojie Lu | Xianpei Han | Le Sun
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In supervised event detection, most of the mislabeling occurs between a small number of confusing type pairs, including trigger-NIL pairs and sibling sub-types of the same coarse type. To address this label confusion problem, this paper proposes cost-sensitive regularization, which can force the training procedure to concentrate more on optimizing confusing type pairs. Specifically, we introduce a cost-weighted term into the training loss, which penalizes more on mislabeling between confusing label pairs. Furthermore, we also propose two estimators which can effectively measure such label confusion based on instance-level or population-level statistics. Experiments on TAC-KBP 2017 datasets demonstrate that the proposed method can significantly improve the performances of different models in both English and Chinese event detection.

2018

pdf bib
Adaptive Scaling for Sparse Detection in Information Extraction
Hongyu Lin | Yaojie Lu | Xianpei Han | Le Sun
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper focuses on detection tasks in information extraction, where positive instances are sparsely distributed and models are usually evaluated using F-measure on positive classes. These characteristics often result in deficient performance of neural network based detection models. In this paper, we propose adaptive scaling, an algorithm which can handle the positive sparsity problem and directly optimize over F-measure via dynamic cost-sensitive learning. To this end, we borrow the idea of marginal utility from economics and propose a theoretical framework for instance importance measuring without introducing any additional hyper-parameters. Experiments show that our algorithm leads to a more effective and stable training of neural network based detection models.

pdf bib
Nugget Proposal Networks for Chinese Event Detection
Hongyu Lin | Yaojie Lu | Xianpei Han | Le Sun
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Neural network based models commonly regard event detection as a word-wise classification task, which suffer from the mismatch problem between words and event triggers, especially in languages without natural word delimiters such as Chinese. In this paper, we propose Nugget Proposal Networks (NPNs), which can solve the word-trigger mismatch problem by directly proposing entire trigger nuggets centered at each character regardless of word boundaries. Specifically, NPNs perform event detection in a character-wise paradigm, where a hybrid representation for each character is first learned to capture both structural and semantic information from both characters and words. Then based on learned representations, trigger nuggets are proposed and categorized by exploiting character compositional structures of Chinese event triggers. Experiments on both ACE2005 and TAC KBP 2017 datasets show that NPNs significantly outperform the state-of-the-art methods.

2017

pdf bib
Reasoning with Heterogeneous Knowledge for Commonsense Machine Comprehension
Hongyu Lin | Le Sun | Xianpei Han
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Reasoning with commonsense knowledge is critical for natural language understanding. Traditional methods for commonsense machine comprehension mostly only focus on one specific kind of knowledge, neglecting the fact that commonsense reasoning requires simultaneously considering different kinds of commonsense knowledge. In this paper, we propose a multi-knowledge reasoning method, which can exploit heterogeneous knowledge for commonsense machine comprehension. Specifically, we first mine different kinds of knowledge (including event narrative knowledge, entity semantic knowledge and sentiment coherent knowledge) and encode them as inference rules with costs. Then we propose a multi-knowledge reasoning model, which selects inference rules for a specific reasoning context using attention mechanism, and reasons by summarizing all valid inference rules. Experiments on RocStories show that our method outperforms traditional models significantly.

2015

pdf bib
A Context-Aware Topic Model for Statistical Machine Translation
Jinsong Su | Deyi Xiong | Yang Liu | Xianpei Han | Hongyu Lin | Junfeng Yao | Min Zhang
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)