Hoonsang Yoon
2022
Mismatch between Multi-turn Dialogue and its Evaluation Metric in Dialogue State Tracking
Takyoung Kim
|
Hoonsang Yoon
|
Yukyung Lee
|
Pilsung Kang
|
Misuk Kim
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
Dialogue state tracking (DST) aims to extract essential information from multi-turn dialog situations and take appropriate actions. A belief state, one of the core pieces of information, refers to the subject and its specific content, and appears in the form of domain-slot-value. The trained model predicts “accumulated” belief states in every turn, and joint goal accuracy and slot accuracy are mainly used to evaluate the prediction; however, we specify that the current evaluation metrics have a critical limitation when evaluating belief states accumulated as the dialogue proceeds, especially in the most used MultiWOZ dataset. Additionally, we propose relative slot accuracy to complement existing metrics. Relative slot accuracy does not depend on the number of predefined slots, and allows intuitive evaluation by assigning relative scores according to the turn of each dialog. This study also encourages not solely the reporting of joint goal accuracy, but also various complementary metrics in DST tasks for the sake of a realistic evaluation.
Oh My Mistake!: Toward Realistic Dialogue State Tracking including Turnback Utterances
Takyoung Kim
|
Yukyung Lee
|
Hoonsang Yoon
|
Pilsung Kang
|
Junseong Bang
|
Misuk Kim
Proceedings of the Towards Semi-Supervised and Reinforced Task-Oriented Dialog Systems (SereTOD)
The primary purpose of dialogue state tracking(DST), a critical component of an end-toend conversational system, is to build a model that responds well to real-world situations. Although we often change our minds from time to time during ordinary conversations, current benchmark datasets do not adequately reflect such occurrences and instead consist of over-simplified conversations, in which no one changes their mind during a conversation. As the main question inspiring the present study, “Are current benchmark datasets sufficiently diverse to handle casual conversations in which one changes their mind after a certain topic is over?” We found that the answer is “No” because DST models cannot refer to previous user preferences when template-based turnback utterances are injected into the dataset. Even in the the simplest mind-changing (turnback) scenario, the performance of DST models significantly degenerated. However, we found that this performance degeneration can be recovered when the turnback scenarios are explicitly designed in the training set, implying that the problem is not with the DST models but rather with the construction of the benchmark dataset.