Hosein Mohebbi


2024

pdf bib
Transformer-specific Interpretability
Hosein Mohebbi | Jaap Jumelet | Michael Hanna | Afra Alishahi | Willem Zuidema
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: Tutorial Abstracts

Transformers have emerged as dominant play- ers in various scientific fields, especially NLP. However, their inner workings, like many other neural networks, remain opaque. In spite of the widespread use of model-agnostic interpretability techniques, including gradient-based and occlusion-based, their shortcomings are becoming increasingly apparent for Transformer interpretation, making the field of interpretability more demanding today. In this tutorial, we will present Transformer-specific interpretability methods, a new trending approach, that make use of specific features of the Transformer architecture and are deemed more promising for understanding Transformer-based models. We start by discussing the potential pitfalls and misleading results model-agnostic approaches may produce when interpreting Transformers. Next, we discuss Transformer-specific methods, including those designed to quantify context- mixing interactions among all input pairs (as the fundamental property of the Transformer architecture) and those that combine causal methods with low-level Transformer analysis to identify particular subnetworks within a model that are responsible for specific tasks. By the end of the tutorial, we hope participants will understand the advantages (as well as current limitations) of Transformer-specific interpretability methods, along with how these can be applied to their own research.

2023

pdf bib
Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP
Yonatan Belinkov | Sophie Hao | Jaap Jumelet | Najoung Kim | Arya McCarthy | Hosein Mohebbi
Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP

pdf bib
Quantifying Context Mixing in Transformers
Hosein Mohebbi | Willem Zuidema | Grzegorz Chrupała | Afra Alishahi
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Self-attention weights and their transformed variants have been the main source of information for analyzing token-to-token interactions in Transformer-based models. But despite their ease of interpretation, these weights are not faithful to the models’ decisions as they are only one part of an encoder, and other components in the encoder layer can have considerable impact on information mixing in the output representations. In this work, by expanding the scope of analysis to the whole encoder block, we propose Value Zeroing, a novel context mixing score customized for Transformers that provides us with a deeper understanding of how information is mixed at each encoder layer. We demonstrate the superiority of our context mixing score over other analysis methods through a series of complementary evaluations with different viewpoints based on linguistically informed rationales, probing, and faithfulness analysis.

pdf bib
Homophone Disambiguation Reveals Patterns of Context Mixing in Speech Transformers
Hosein Mohebbi | Grzegorz Chrupała | Willem Zuidema | Afra Alishahi
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Transformers have become a key architecture in speech processing, but our understanding of how they build up representations of acoustic and linguistic structure is limited. In this study, we address this gap by investigating how measures of ‘context-mixing’ developed for text models can be adapted and applied to models of spoken language. We identify a linguistic phenomenon that is ideal for such a case study: homophony in French (e.g. livre vs livres), where a speech recognition model has to attend to syntactic cues such as determiners and pronouns in order to disambiguate spoken words with identical pronunciations and transcribe them while respecting grammatical agreement. We perform a series of controlled experiments and probing analyses on Transformer-based speech models. Our findings reveal that representations in encoder-only models effectively incorporate these cues to identify the correct transcription, whereas encoders in encoder-decoder models mainly relegate the task of capturing contextual dependencies to decoder modules.

2022

pdf bib
AdapLeR: Speeding up Inference by Adaptive Length Reduction
Ali Modarressi | Hosein Mohebbi | Mohammad Taher Pilehvar
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Pre-trained language models have shown stellar performance in various downstream tasks. But, this usually comes at the cost of high latency and computation, hindering their usage in resource-limited settings. In this work, we propose a novel approach for reducing the computational cost of BERT with minimal loss in downstream performance. Our method dynamically eliminates less contributing tokens through layers, resulting in shorter lengths and consequently lower computational cost. To determine the importance of each token representation, we train a Contribution Predictor for each layer using a gradient-based saliency method. Our experiments on several diverse classification tasks show speedups up to 22x during inference time without much sacrifice in performance. We also validate the quality of the selected tokens in our method using human annotations in the ERASER benchmark. In comparison to other widely used strategies for selecting important tokens, such as saliency and attention, our proposed method has a significantly lower false positive rate in generating rationales. Our code is freely available at https://github.com/amodaresi/AdapLeR.

2021

pdf bib
Not All Models Localize Linguistic Knowledge in the Same Place: A Layer-wise Probing on BERToids’ Representations
Mohsen Fayyaz | Ehsan Aghazadeh | Ali Modarressi | Hosein Mohebbi | Mohammad Taher Pilehvar
Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

Most of the recent works on probing representations have focused on BERT, with the presumption that the findings might be similar to the other models. In this work, we extend the probing studies to two other models in the family, namely ELECTRA and XLNet, showing that variations in the pre-training objectives or architectural choices can result in different behaviors in encoding linguistic information in the representations. Most notably, we observe that ELECTRA tends to encode linguistic knowledge in the deeper layers, whereas XLNet instead concentrates that in the earlier layers. Also, the former model undergoes a slight change during fine-tuning, whereas the latter experiences significant adjustments. Moreover, we show that drawing conclusions based on the weight mixing evaluation strategy—which is widely used in the context of layer-wise probing—can be misleading given the norm disparity of the representations across different layers. Instead, we adopt an alternative information-theoretic probing with minimum description length, which has recently been proven to provide more reliable and informative results.

pdf bib
Exploring the Role of BERT Token Representations to Explain Sentence Probing Results
Hosein Mohebbi | Ali Modarressi | Mohammad Taher Pilehvar
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Several studies have been carried out on revealing linguistic features captured by BERT. This is usually achieved by training a diagnostic classifier on the representations obtained from different layers of BERT. The subsequent classification accuracy is then interpreted as the ability of the model in encoding the corresponding linguistic property. Despite providing insights, these studies have left out the potential role of token representations. In this paper, we provide a more in-depth analysis on the representation space of BERT in search for distinct and meaningful subspaces that can explain the reasons behind these probing results. Based on a set of probing tasks and with the help of attribution methods we show that BERT tends to encode meaningful knowledge in specific token representations (which are often ignored in standard classification setups), allowing the model to detect syntactic and semantic abnormalities, and to distinctively separate grammatical number and tense subspaces.