Automated Essay Scoring (AES) aims to score essays written in response to specific prompts. Many AES models have been proposed, but most of them are either prompt-specific or prompt-adaptive and cannot generalize well on “unseen” prompts. This work focuses on improving the generalization ability of AES models from the perspective of domain generalization, where the data of target prompts cannot be accessed during training. Specifically, we propose a prompt-aware neural AES model to extract comprehensive representation for essay scoring, including both prompt-invariant and prompt-specific features. To improve the generalization of representation, we further propose a novel disentangled representation learning framework. In this framework, a contrastive norm-angular alignment strategy and a counterfactual self-training strategy are designed to disentangle the prompt-invariant information and prompt-specific information in representation. Extensive experimental results on datasets of both ASAP and TOEFL11 demonstrate the effectiveness of our method under the domain generalization setting.
Emotion-cause pair extraction (ECPE) is a new task which aims at extracting the potential clause pairs of emotions and corresponding causes in a document. To tackle this task, a two-step method was proposed by previous study which first extracted emotion clauses and cause clauses individually, then paired the emotion and cause clauses, and filtered out the pairs without causality. Different from this method that separated the detection and the matching of emotion and cause into two steps, we propose a Symmetric Local Search Network (SLSN) model to perform the detection and matching simultaneously by local search. SLSN consists of two symmetric subnetworks, namely the emotion subnetwork and the cause subnetwork. Each subnetwork is composed of a clause representation learner and a local pair searcher. The local pair searcher is a specially-designed cross-subnetwork component which can extract the local emotion-cause pairs. Experimental results on the ECPE corpus demonstrate the superiority of our SLSN over existing state-of-the-art methods.