Huaishao Luo


pdf bib
Hashing based Efficient Inference for Image-Text Matching
Rong-Cheng Tu | Lei Ji | Huaishao Luo | Botian Shi | Heyan Huang | Nan Duan | Xian-Ling Mao
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
GEM: A General Evaluation Benchmark for Multimodal Tasks
Lin Su | Nan Duan | Edward Cui | Lei Ji | Chenfei Wu | Huaishao Luo | Yongfei Liu | Ming Zhong | Taroon Bharti | Arun Sacheti
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Control Image Captioning Spatially and Temporally
Kun Yan | Lei Ji | Huaishao Luo | Ming Zhou | Nan Duan | Shuai Ma
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Generating image captions with user intention is an emerging need. The recently published Localized Narratives dataset takes mouse traces as another input to the image captioning task, which is an intuitive and efficient way for a user to control what to describe in the image. However, how to effectively employ traces to improve generation quality and controllability is still under exploration. This paper aims to solve this problem by proposing a novel model called LoopCAG, which connects Contrastive constraints and Attention Guidance in a Loop manner, engaged explicit spatial and temporal constraints to the generating process. Precisely, each generated sentence is temporally aligned to the corresponding trace sequence through a contrastive learning strategy. Besides, each generated text token is supervised to attend to the correct visual objects under heuristic spatial attention guidance. Comprehensive experimental results demonstrate that our LoopCAG model learns better correspondence among the three modalities (vision, language, and traces) and achieves SOTA performance on trace-controlled image captioning task. Moreover, the controllability and explainability of LoopCAG are validated by analyzing spatial and temporal sensitivity during the generation process.


pdf bib
MaP: A Matrix-based Prediction Approach to Improve Span Extraction in Machine Reading Comprehension
Huaishao Luo | Yu Shi | Ming Gong | Linjun Shou | Tianrui Li
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Span extraction is an essential problem in machine reading comprehension. Most of the existing algorithms predict the start and end positions of an answer span in the given corresponding context by generating two probability vectors. In this paper, we propose a novel approach that extends the probability vector to a probability matrix. Such a matrix can cover more start-end position pairs. Precisely, to each possible start index, the method always generates an end probability vector. Besides, we propose a sampling-based training strategy to address the computational cost and memory issue in the matrix training phase. We evaluate our method on SQuAD 1.1 and three other question answering benchmarks. Leveraging the most competitive models BERT and BiDAF as the backbone, our proposed approach can get consistent improvements in all datasets, demonstrating the effectiveness of the proposed method.

pdf bib
GRACE: Gradient Harmonized and Cascaded Labeling for Aspect-based Sentiment Analysis
Huaishao Luo | Lei Ji | Tianrui Li | Daxin Jiang | Nan Duan
Findings of the Association for Computational Linguistics: EMNLP 2020

In this paper, we focus on the imbalance issue, which is rarely studied in aspect term extraction and aspect sentiment classification when regarding them as sequence labeling tasks. Besides, previous works usually ignore the interaction between aspect terms when labeling polarities. We propose a GRadient hArmonized and CascadEd labeling model (GRACE) to solve these problems. Specifically, a cascaded labeling module is developed to enhance the interchange between aspect terms and improve the attention of sentiment tokens when labeling sentiment polarities. The polarities sequence is designed to depend on the generated aspect terms labels. To alleviate the imbalance issue, we extend the gradient harmonized mechanism used in object detection to the aspect-based sentiment analysis by adjusting the weight of each label dynamically. The proposed GRACE adopts a post-pretraining BERT as its backbone. Experimental results demonstrate that the proposed model achieves consistency improvement on multiple benchmark datasets and generates state-of-the-art results.


pdf bib
DOER: Dual Cross-Shared RNN for Aspect Term-Polarity Co-Extraction
Huaishao Luo | Tianrui Li | Bing Liu | Junbo Zhang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

This paper focuses on two related subtasks of aspect-based sentiment analysis, namely aspect term extraction and aspect sentiment classification, which we call aspect term-polarity co-extraction. The former task is to extract aspects of a product or service from an opinion document, and the latter is to identify the polarity expressed in the document about these extracted aspects. Most existing algorithms address them as two separate tasks and solve them one by one, or only perform one task, which can be complicated for real applications. In this paper, we treat these two tasks as two sequence labeling problems and propose a novel Dual crOss-sharEd RNN framework (DOER) to generate all aspect term-polarity pairs of the input sentence simultaneously. Specifically, DOER involves a dual recurrent neural network to extract the respective representation of each task, and a cross-shared unit to consider the relationship between them. Experimental results demonstrate that the proposed framework outperforms state-of-the-art baselines on three benchmark datasets.