Data annotation and synthesis generally refers to the labeling or generating of raw data with relevant information, which could be used for improving the efficacy of machine learning models. The process, however, is labor-intensive and costly. The emergence of advanced Large Language Models (LLMs), exemplified by GPT-4, presents an unprecedented opportunity to automate the complicated process of data annotation and synthesis. While existing surveys have extensively covered LLM architecture, training, and general applications, we uniquely focus on their specific utility for data annotation. This survey contributes to three core aspects: LLM-Based Annotation Generation, LLM-Generated Annotations Assessment, and LLM-Generated Annotations Utilization. Furthermore, this survey includes an in-depth taxonomy of data types that LLMs can annotate, a comprehensive review of learning strategies for models utilizing LLM-generated annotations, and a detailed discussion of the primary challenges and limitations associated with using LLMs for data annotation and synthesis. Serving as a key guide, this survey aims to assist researchers and practitioners in exploring the potential of the latest LLMs for data annotation, thereby fostering future advancements in this critical field.
Retrieval-Augmented Generative (RAG) models enhance Large Language Models (LLMs) by integrating external knowledge bases, improving their performance in applications like fact-checking and information searching. In this paper, we demonstrate a security threat where adversaries can exploit the openness of these knowledge bases by injecting deceptive content into the retrieval database, intentionally changing the model’s behavior. This threat is critical as it mirrors real-world usage scenarios where RAG systems interact with publicly accessible knowledge bases, such as web scrapings and user-contributed data pools. To be more realistic, we target a realistic setting where the adversary has no knowledge of users’ queries, knowledge base data, and the LLM parameters. We demonstrate that it is possible to exploit the model successfully through crafted content uploads with access to the retriever. Our findings emphasize an urgent need for security measures in the design and deployment of RAG systems to prevent potential manipulation and ensure the integrity of machine-generated content.
While textual information significantly enhances the performance of pre-trained language models (PLMs) in knowledge graph completion (KGC), the static and noisy nature of existing corpora collected from Wikipedia articles or synsets definitions often limits the potential of PLM-based KGC models. To surmount these challenges, we introduce the Contextualization Distillation strategy, a versatile plug-in-and-play approach compatible with both discriminative and generative KGC frameworks. Our method begins by instructing large language models (LLMs) to transform compact, structural triplets into context-rich segments. Subsequently, we introduce two tailored auxiliary tasks—reconstruction and contextualization—allowing smaller KGC models to assimilate insights from these enriched triplets. Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach, revealing consistent performance enhancements irrespective of underlying pipelines or architectures. Moreover, our analysis makes our method more explainable and provides insight into how to generate high-quality corpora for KGC, as well as the selection of suitable distillation tasks.
Sentence-level attacks craft adversarial sentences that are synonymous with correctly-classified sentences but are misclassified by the text classifiers. Under the black-box setting, classifiers are only accessible through their feedback to queried inputs, which is predominately available in the form of class probabilities. Even though utilizing class probabilities results in stronger attacks, due to the challenges of using them for sentence-level attacks, existing attacks use either no feedback or only the class labels. Overcoming the challenges, we develop a novel algorithm that uses class probabilities for black-box sentence-level attacks, investigate the effectiveness of using class probabilities on the attack’s success, and examine the question if it is worthy or practical to use class probabilities by black-box sentence-level attacks. We conduct extensive evaluations of the proposed attack comparing with the baselines across various classifiers and benchmark datasets.
Recent advancements in large language models (LLMs) have achieved promising performances across various applications. Nonetheless, the ongoing challenge of integrating long-tail knowledge continues to impede the seamless adoption of LLMs in specialized domains. In this work, we introduce DALK, a.k.a. Dynamic Co-Augmentation of LLMs and KG, to address this limitation and demonstrate its ability on studying Alzheimer’s Disease (AD), a specialized sub-field in biomedicine and a global health priority. With a synergized framework of LLM and KG mutually enhancing each other, we first leverage LLM to construct an evolving AD-specific knowledge graph (KG) sourced from AD-related scientific literature, and then we utilize a coarse-to-fine sampling method with a novel self-aware knowledge retrieval approach to select appropriate knowledge from the KG to augment LLM inference capabilities. The experimental results, conducted on our constructed AD question answering (ADQA) benchmark, underscore the efficacy of DALK. Additionally, we perform a series of detailed analyses that can offer valuable insights and guidelines for the emerging topic of mutually enhancing KG and LLM.
Although social media platforms are a prominent arena for users to engage in interpersonal discussions and express opinions, the facade and anonymity offered by social media may allow users to spew hate speech and offensive content. Given the massive scale of such platforms, there arises a need to automatically identify and flag instances of hate speech. Although several hate speech detection methods exist, most of these black-box methods are not interpretable or explainable by design. To address the lack of interpretability, in this paper, we propose to use state-of-the-art Large Language Models (LLMs) to extract features in the form of rationales from the input text, to train a base hate speech classifier, thereby enabling faithful interpretability by design. Our framework effectively combines the textual understanding capabilities of LLMs and the discriminative power of state-of-the-art hate speech classifiers to make these classifiers faithfully interpretable. Our comprehensive evaluation on a variety of social media hate speech datasets demonstrate: (1) the goodness of the LLM-extracted rationales, and (2) the surprising retention of detector performance even after training to ensure interpretability. All code and data will be made available at https://github.com/AmritaBh/shield.
The contemporary LLMs are prone to producing hallucinations, stemming mainly from the knowledge gaps within the models. To address this critical limitation, researchers employ diverse strategies to augment the LLMs by incorporating external knowledge, aiming to reduce hallucinations and enhance reasoning accuracy. Among these strategies, leveraging knowledge graphs as a source of external information has demonstrated promising results. In this survey, we comprehensively review these knowledge-graph-based augmentation techniques in LLMs, focusing on their efficacy in mitigating hallucinations. We systematically categorize these methods into three overarching groups, offering methodological comparisons and performance evaluations. Lastly, this survey explores the current trends and challenges associated with these techniques and outlines potential avenues for future research in this emerging field.
This paper presents the submission from Global Tone Communication Co., Ltd. and Dalian University of Technology for the WMT24 shared general Machine Translation (MT) task at the Conference on Empirical Methods in Natural Language Processing (EMNLP). Our participation encompasses two language pairs: English to Japanese and Japanese to Chinese. The systems are developed without particular constraints or requirements, facilitating extensive research in machine translation. We emphasize back-translation, utilize multilingual translation models, and apply fine-tuning strategies to improve performance. Additionally, we integrate both human-generated and machine-generated data to fine-tune our models, leading to enhanced translation accuracy. The automatic evaluation results indicate that our system ranks first in terms of BLEU score for the Japanese to Chinese translation.
The scaling of Large Language Models (LLMs) for retrieval-based tasks, particularly in Retrieval Augmented Generation (RAG), faces significant memory constraints, especially when fine-tuning extensive prompt sequences. Current open-source libraries support full-model inference and fine-tuning across multiple GPUs but fall short of accommodating the efficient parameter distribution required for retrieved context. Addressing this gap, we introduce a novel framework for PEFT-compatible fine-tuning of GPT models, leveraging distributed training. Our framework uniquely utilizes JAX’s just-in-time (JIT) compilation and tensor-sharding for efficient resource management, thereby enabling accelerated fine-tuning with reduced memory requirements. This advancement significantly improves the scalability and feasibility of fine-tuning LLMs for complex RAG applications, even on systems with limited GPU resources. Our experiments show more than 12x improvement in runtime compared to Hugging Face/DeepSpeed implementation with four GPUs while consuming less than half the VRAM per GPU.
In recent years, there has been a rapid proliferation of AI-generated text, primarily driven by the release of powerful pre-trained language models (PLMs). To address the issue of misuse associated with AI-generated text, various high-performing detectors have been developed, including the OpenAI detector and the Stanford DetectGPT. In our study, we ask how reliable these detectors are. We answer the question by designing a novel approach that can prompt any PLM to generate text that evades these high-performing detectors. The proposed approach suggests a universal evasive prompt, a novel type of soft prompt, which guides PLMs in producing “human-like” text that can mislead the detectors. The novel universal evasive prompt is achieved in two steps: First, we create an evasive soft prompt tailored to a specific PLM through prompt tuning; and then, we leverage the transferability of soft prompts to transfer the learned evasive soft prompt from one PLM to another. Employing multiple PLMs in various writing tasks, we conduct extensive experiments to evaluate the efficacy of the evasive soft prompts in their evasion of state-of-the-art detectors.
Manipulated news online is a growing problem which necessitates the use of automated systems to curtail its spread. We argue that while misinformation and disinformation detection have been studied, there has been a lack of investment in the important open challenge of detecting harmful agendas in news articles; identifying harmful agendas is critical to flag news campaigns with the greatest potential for real world harm. Moreover, due to real concerns around censorship, harmful agenda detectors must be interpretable to be effective. In this work, we propose this new task and release a dataset, NewsAgendas, of annotated news articles for agenda identification. We show how interpretable systems can be effective on this task and demonstrate that they can perform comparably to black-box models.
Multilingual neural machine translation aims to translate multiple language pairs in a single model and has shown great success thanks to the knowledge transfer across languages with the shared parameters. Despite promising, this share-all paradigm suffers from insufficient ability to capture language-specific features. Currently, the common practice is to insert or search language-specific networks to balance the shared and specific features. However, those two types of features are not sufficient enough to model the complex commonality and divergence across languages, such as the locally shared features among similar languages, which leads to sub-optimal transfer, especially in massively multilingual translation. In this paper, we propose a novel token-level feature mixing method that enables the model to capture different features and dynamically determine the feature sharing across languages. Based on the observation that the tokens in the multilingual model are usually shared by different languages, we we insert a feature mixing layer into each Transformer sublayer and model each token representation as a mix of different features, with a proportion indicating its feature preference. In this way, we can perform fine-grained feature sharing and achieve better multilingual transfer. Experimental results on multilingual datasets show that our method outperforms various strong baselines and can be extended to zero-shot translation. Further analyses reveal that our method can capture different linguistic features and bridge the representation gap across languages.
This paper describes DUTNLP Lab’s submission to the WMT22 General MT Task on four translation directions: English to/from Chinese and English to/from Japanese under the constrained condition. Our primary system are built on several Transformer variants which employ wider FFN layer or deeper encoder layer. The bilingual data are filtered by detailed data pre-processing strategies and four data augmentation methods are combined to enlarge the training data with the provided monolingual data. Several common methods are also employed to further improve the model performance, such as fine-tuning, model ensemble and post-editing. As a result, our constrained systems achieve 29.01, 63.87, 41.84, and 24.82 BLEU scores on Chinese-to-English, English-to-Chinese, English-to-Japanese, and Japanese-to-English, respectively.
Debiasing word embeddings has been largely limited to individual and independent social categories. However, real-world corpora typically present multiple social categories that possibly correlate or intersect with each other. For instance, “hair weaves” is stereotypically associated with African American females, but neither African American nor females alone. Therefore, this work studies biases associated with multiple social categories: joint biases induced by the union of different categories and intersectional biases that do not overlap with the biases of the constituent categories. We first empirically observe that individual biases intersect non-trivially (i.e., over a one-dimensional subspace). Drawing from the intersectional theory in social science and the linguistic theory, we then construct an intersectional subspace to debias for multiple social categories using the nonlinear geometry of individual biases. Empirical evaluations corroborate the efficacy of our approach.
The element of repetition in cyberbullying behavior has directed recent computational studies toward detecting cyberbullying based on a social media session. In contrast to a single text, a session may consist of an initial post and an associated sequence of comments. Yet, emerging efforts to enhance the performance of session-based cyberbullying detection have largely overlooked unintended social biases in existing cyberbullying datasets. For example, a session containing certain demographic-identity terms (e.g., “gay” or “black”) is more likely to be classified as an instance of cyberbullying. In this paper, we first show evidence of such bias in models trained on sessions collected from different social media platforms (e.g., Instagram). We then propose a context-aware and model-agnostic debiasing strategy that leverages a reinforcement learning technique, without requiring any extra resources or annotations apart from a pre-defined set of sensitive triggers commonly used for identifying cyberbullying instances. Empirical evaluations show that the proposed strategy can simultaneously alleviate the impacts of the unintended biases and improve the detection performance.
This paper describes DUT-NLP Lab’s submission to the WMT-21 triangular machine translation shared task. The participants are not allowed to use other data and the translation direction of this task is Russian-to-Chinese. In this task, we use the Transformer as our baseline model, and integrate several techniques to enhance the performance of the baseline, including data filtering, data selection, fine-tuning, and post-editing. Further, to make use of the English resources, such as Russian/English and Chinese/English parallel data, the relationship triangle is constructed by multilingual neural machine translation systems. As a result, our submission achieves a BLEU score of 21.9 in Russian-to-Chinese.
Paraphrase generation is a longstanding NLP task that has diverse applications on downstream NLP tasks. However, the effectiveness of existing efforts predominantly relies on large amounts of golden labeled data. Though unsupervised endeavors have been proposed to alleviate this issue, they may fail to generate meaningful paraphrases due to the lack of supervision signals. In this work, we go beyond the existing paradigms and propose a novel approach to generate high-quality paraphrases with data of weak supervision. Specifically, we tackle the weakly-supervised paraphrase generation problem by: (1) obtaining abundant weakly-labeled parallel sentences via retrieval-based pseudo paraphrase expansion; and (2) developing a meta-learning framework to progressively select valuable samples for fine-tuning a pre-trained language model BART on the sentential paraphrasing task. We demonstrate that our approach achieves significant improvements over existing unsupervised approaches, and is even comparable in performance with supervised state-of-the-arts.
Text classification is a critical research topic with broad applications in natural language processing. Recently, graph neural networks (GNNs) have received increasing attention in the research community and demonstrated their promising results on this canonical task. Despite the success, their performance could be largely jeopardized in practice since they are: (1) unable to capture high-order interaction between words; (2) inefficient to handle large datasets and new documents. To address those issues, in this paper, we propose a principled model – hypergraph attention networks (HyperGAT), which can obtain more expressive power with less computational consumption for text representation learning. Extensive experiments on various benchmark datasets demonstrate the efficacy of the proposed approach on the text classification task.
User-generated textual data is rich in content and has been used in many user behavioral modeling tasks. However, it could also leak user private-attribute information that they may not want to disclose such as age and location. User’s privacy concerns mandate data publishers to protect privacy. One effective way is to anonymize the textual data. In this paper, we study the problem of textual data anonymization and propose a novel Reinforcement Learning-based Text Anonymizor, RLTA, which addresses the problem of private-attribute leakage while preserving the utility of textual data. Our approach first extracts a latent representation of the original text w.r.t. a given task, then leverages deep reinforcement learning to automatically learn an optimal strategy for manipulating text representations w.r.t. the received privacy and utility feedback. Experiments show the effectiveness of this approach in terms of preserving both privacy and utility.