In this paper, we propose an unsupervised query enhanced approach for knowledge-intensive conversations, namely QKConv. There are three modules in QKConv: a query generator, an off-the-shelf knowledge selector, and a response generator. QKConv is optimized through joint training, which produces the response by exploring multiple candidate queries and leveraging corresponding selected knowledge. The joint training solely relies on the dialogue context and target response, getting exempt from extra query annotations or knowledge provenances. To evaluate the effectiveness of the proposed QKConv, we conduct experiments on three representative knowledge-intensive conversation datasets: conversational question-answering, task-oriented dialogue, and knowledge-grounded conversation. Experimental results reveal that QKConv performs better than all unsupervised methods across three datasets and achieves competitive performance compared to supervised methods.
Many open-domain dialogue models pre-trained with social media comments can generate coherent replies but have difficulties producing engaging responses. This phenomenon might mainly result from the deficiency of annotated human-human conversations and the misalignment with human preference. In this paper, we propose a novel and efficient framework Diamante to boost the open-domain chatbot, where two kinds of human feedback (including explicit demonstration and implicit preference) are collected and leveraged. By asking annotators to select or amend the model-generated candidate responses, Diamante efficiently collects the human demonstrated responses and constructs a Chinese chit-chat dataset. To enhance the alignment with human preference, Diamante leverages the implicit preference in the data collection process and introduces the generation-evaluation joint training. Comprehensive experiments indicate that the Diamante dataset and joint training paradigm can significantly boost the performance of pre-trained dialogue models. The overall engagingness of the previous state-of-the-art model has been improved remarkably by 50% in Chinese open-domain conversations.
Existing pipelined task-oriented dialogue systems usually have difficulties adapting to unseen domains, whereas end-to-end systems are plagued by large-scale knowledge bases in practice. In this paper, we introduce a novel query-driven task-oriented dialogue system, namely Q-TOD. The essential information from the dialogue context is extracted into a query, which is further employed to retrieve relevant knowledge records for response generation. Firstly, as the query is in the form of natural language and not confined to the schema of the knowledge base, the issue of domain adaption is alleviated remarkably in Q-TOD. Secondly, as the query enables the decoupling of knowledge retrieval from the generation, Q-TOD gets rid of the issue of knowledge base scalability. To evaluate the effectiveness of the proposed Q-TOD, we collect query annotations for three publicly available task-oriented dialogue datasets. Comprehensive experiments verify that Q-TOD outperforms strong baselines and establishes a new state-of-the-art performance on these datasets.
To explore the limit of dialogue generation pre-training, we present the models of PLATO-XL with up to 11 billion parameters, trained on both Chinese and English social media conversations. To train such large models, we adopt the architecture of unified transformer with high computation and parameter efficiency. In addition, we carry out multi-party aware pre-training to better distinguish the characteristic information in social media conversations. With such designs, PLATO-XL successfully achieves superior performances as compared to other approaches in both Chinese and English chitchat. We further explore the capacity of PLATO-XL on other conversational tasks, such as knowledge grounded dialogue and task-oriented conversation. The experimental results indicate that PLATO-XL obtains state-of-the-art results across multiple conversational tasks, verifying its potential as a foundation model of conversational AI.
In task-oriented dialogue systems, recent dialogue state tracking methods tend to perform one-pass generation of the dialogue state based on the previous dialogue state. The mistakes of these models made at the current turn are prone to be carried over to the next turn, causing error propagation. In this paper, we propose a novel Amendable Generation for Dialogue State Tracking (AG-DST), which contains a two-pass generation process: (1) generating a primitive dialogue state based on the dialogue of the current turn and the previous dialogue state, and (2) amending the primitive dialogue state from the first pass. With the additional amending generation pass, our model is tasked to learn more robust dialogue state tracking by amending the errors that still exist in the primitive dialogue state, which plays the role of reviser in the double-checking process and alleviates unnecessary error propagation. Experimental results show that AG-DST significantly outperforms previous works in two active DST datasets (MultiWOZ 2.2 and WOZ 2.0), achieving new state-of-the-art performances.
Large-scale conversation models are turning to leveraging external knowledge to improve the factual accuracy in response generation. Considering the infeasibility to annotate the external knowledge for large-scale dialogue corpora, it is desirable to learn the knowledge selection and response generation in an unsupervised manner. In this paper, we propose PLATO-KAG (Knowledge-Augmented Generation), an unsupervised learning approach for end-to-end knowledge-grounded conversation modeling. For each dialogue context, the top-k relevant knowledge elements are selected and then employed in knowledge-grounded response generation. The two components of knowledge selection and response generation are optimized jointly and effectively under a balanced objective. Experimental results on two publicly available datasets validate the superiority of PLATO-KAG.
Pre-training models have been proved effective for a wide range of natural language processing tasks. Inspired by this, we propose a novel dialogue generation pre-training framework to support various kinds of conversations, including chit-chat, knowledge grounded dialogues, and conversational question answering. In this framework, we adopt flexible attention mechanisms to fully leverage the bi-directional context and the uni-directional characteristic of language generation. We also introduce discrete latent variables to tackle the inherent one-to-many mapping problem in response generation. Two reciprocal tasks of response generation and latent act recognition are designed and carried out simultaneously within a shared network. Comprehensive experiments on three publicly available datasets verify the effectiveness and superiority of the proposed framework.
In this paper, a novel Generation-Evaluation framework is developed for multi-turn conversations with the objective of letting both participants know more about each other. For the sake of rational knowledge utilization and coherent conversation flow, a dialogue strategy which controls knowledge selection is instantiated and continuously adapted via reinforcement learning. Under the deployed strategy, knowledge grounded conversations are conducted with two dialogue agents. The generated dialogues are comprehensively evaluated on aspects like informativeness and coherence, which are aligned with our objective and human instinct. These assessments are integrated as a compound reward to guide the evolution of dialogue strategy via policy gradient. Comprehensive experiments have been carried out on the publicly available dataset, demonstrating that the proposed method outperforms the other state-of-the-art approaches significantly.