Hui Huang


2024

pdf bib
Self-Evaluation of Large Language Model based on Glass-box Features
Hui Huang | Yingqi Qu | Jing Liu | Muyun Yang | Bing Xu | Tiejun Zhao | Wenpeng Lu
Findings of the Association for Computational Linguistics: EMNLP 2024

The proliferation of open-source Large Language Models (LLMs) underscores the pressing need for evaluation methods. Existing works primarily rely on external evaluators, focusing on training and prompting strategies. However, a crucial aspect – model-aware glass-box features – is overlooked. In this study, we explore the utility of glass-box features under the scenario of self-evaluation, namely applying an LLM to evaluate its own output. We investigate various glass-box feature groups and discovered that the softmax distribution serves as a reliable quality indicator for self-evaluation. Experimental results on public benchmarks validate the feasibility of self-evaluation of LLMs using glass-box features.

pdf bib
HIT-MI&T Lab at SemEval-2024 Task 6: DeBERTa-based Entailment Model is a Reliable Hallucination Detector
Wei Liu | Wanyao Shi | Zijian Zhang | Hui Huang
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

This paper describes our submission for SemEval-2024 Task 6: SHROOM, a Shared-task on Hallucinations and Related Observable Overgeneration Mistakes. We propose four groups of methods for hallucination detection: 1) Entailment Recognition; 2) Similarity Search; 3) Factuality Verification; 4) Confidence Estimation. The four methods rely on either the semantic relationship between the hypothesis and its source (target) or on the model-aware features during decoding. We participated in both the model-agnostic and model-aware tracks. Our method’s effectiveness is validated by our high rankings 3rd in the model-agnostic track and 5th in the model-aware track. We have released our code on GitHub.

2023

pdf bib
Improving Translation Quality Estimation with Bias Mitigation
Hui Huang | Shuangzhi Wu | Kehai Chen | Hui Di | Muyun Yang | Tiejun Zhao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

State-of-the-art translation Quality Estimation (QE) models are proven to be biased. More specifically, they over-rely on monolingual features while ignoring the bilingual semantic alignment. In this work, we propose a novel method to mitigate the bias of the QE model and improve estimation performance. Our method is based on the contrastive learning between clean and noisy sentence pairs. We first introduce noise to the target side of the parallel sentence pair, forming the negative samples. With the original parallel pairs as the positive sample, the QE model is contrastively trained to distinguish the positive samples from the negative ones. This objective is jointly trained with the regression-style quality estimation, so as to prevent the QE model from overfitting to monolingual features. Experiments on WMT QE evaluation datasets demonstrate that our method improves the estimation performance by a large margin while mitigating the bias.

pdf bib
HIT-MI&T Lab’s Submission to Eval4NLP 2023 Shared Task
Rui Zhang | Fuhai Song | Hui Huang | Jinghao Yuan | Muyun Yang | Tiejun Zhao
Proceedings of the 4th Workshop on Evaluation and Comparison of NLP Systems

Recently, Large Language Models (LLMs) have boosted the research in natural language processing and shown impressive capabilities across numerous domains, including machine translation evaluation. This paper presents our methods developed for the machine translation evaluation sub-task of the Eval4NLP 2023 Shared Task. Based on the provided LLMs, we propose a generation-based method as well as a probability-based method to perform evaluation, explore different strategies when selecting the demonstrations for in-context learning, and try different ensemble methods to further improve the evaluation accuracy. The experiment results on the development set and test set demonstrate the effectiveness of our proposed method.

pdf bib
Iterative Nearest Neighbour Machine Translation for Unsupervised Domain Adaptation
Hui Huang | Shuangzhi Wu | Xinnian Liang | Zefan Zhou | Muyun Yang | Tiejun Zhao
Findings of the Association for Computational Linguistics: ACL 2023

Unsupervised domain adaptation of machine translation, which adapts a pre-trained translation model to a specific domain without in-domain parallel data, has drawn extensive attention in recent years. However, most existing methods focus on the fine-tuning based techniques, which is non-extensible. In this paper, we propose a new method to perform unsupervised domain adaptation in a non-parametric manner. Our method only resorts to in-domain monolingual data, and we jointly perform nearest neighbour inference on both forward and backward translation directions. The forward translation model creates nearest neighbour datastore for the backward direction, and vice versa, strengthening each other in an iterative style. Experiments on multi-domain datasets demonstrate that our method significantly improves the in-domain translation performance and achieves state-of-the-art results among non-parametric methods.

2022

pdf bib
Iterative Constrained Back-Translation for Unsupervised Domain Adaptation of Machine Translation
Hongxiao Zhang | Hui Huang | Jiale Gao | Yufeng Chen | Jinan Xu | Jian Liu
Proceedings of the 29th International Conference on Computational Linguistics

Back-translation has been proven to be effective in unsupervised domain adaptation of neural machine translation (NMT). However, the existing back-translation methods mainly improve domain adaptability by generating in-domain pseudo-parallel data that contains sentence-structural knowledge, paying less attention to the in-domain lexical knowledge, which may lead to poor translation of unseen in-domain words. In this paper, we propose an Iterative Constrained Back-Translation (ICBT) method to incorporate in-domain lexical knowledge on the basis of BT for unsupervised domain adaptation of NMT. Specifically, we apply lexical constraints into back-translation to generate pseudo-parallel data with in-domain lexical knowledge, and then perform round-trip iterations to incorporate more lexical knowledge. Based on this, we further explore sampling strategies of constrained words in ICBT to introduce more targeted lexical knowledge, via domain specificity and confidence estimation. Experimental results on four domains show that our approach achieves state-of-the-art results, improving the BLEU score by up to 3.08 compared to the strongest baseline, which demonstrates the effectiveness of our approach.

pdf bib
BJTU-Toshiba’s Submission to WMT22 Quality Estimation Shared Task
Hui Huang | Hui Di | Chunyou Li | Hanming Wu | Kazushige Ouchi | Yufeng Chen | Jian Liu | Jinan Xu
Proceedings of the Seventh Conference on Machine Translation (WMT)

This paper presents the BJTU-Toshiba joint submission for WMT 2022 quality estimation shared task. We only participate in Task 1 (quality prediction) of the shared task, focusing on the sentence-level MQM prediction. The techniques we experimented with include the integration of monolingual language models and the pre-finetuning of pre-trained representations. We tried two styles of pre-finetuning, namely Translation Language Modeling and Replaced Token Detection. We demonstrate the competitiveness of our system compared to the widely adopted XLM-RoBERTa baseline. Our system is also the top-ranking system on the Sentence-level MQM Prediction for the English-German language pairs.

pdf bib
Improved Data Augmentation for Translation Suggestion
Hongxiao Zhang | Siyu Lai | Songming Zhang | Hui Huang | Yufeng Chen | Jinan Xu | Jian Liu
Proceedings of the Seventh Conference on Machine Translation (WMT)

Translation suggestion (TS) models are used to automatically provide alternative suggestions for incorrect spans in sentences generated by machine translation. This paper introduces the system used in our submission to the WMT’22 Translation Suggestion shared task. Our system is based on the ensemble of different translation architectures, including Transformer, SA-Transformer, and DynamicConv. We use three strategies to construct synthetic data from parallel corpora to compensate for the lack of supervised data. In addition, we introduce a multi-phase pre-training strategy, adding an additional pre-training phase with in-domain data. We rank second and third on the English-German and English-Chinese bidirectional tasks, respectively.

2021

pdf bib
Saliency-based Multi-View Mixed Language Training for Zero-shot Cross-lingual Classification
Siyu Lai | Hui Huang | Dong Jing | Yufeng Chen | Jinan Xu | Jian Liu
Findings of the Association for Computational Linguistics: EMNLP 2021

Recent multilingual pre-trained models, like XLM-RoBERTa (XLM-R), have been demonstrated effective in many cross-lingual tasks. However, there are still gaps between the contextualized representations of similar words in different languages. To solve this problem, we propose a novel framework named Multi-View Mixed Language Training (MVMLT), which leverages code-switched data with multi-view learning to fine-tune XLM-R. MVMLT uses gradient-based saliency to extract keywords which are the most relevant to downstream tasks and replaces them with the corresponding words in the target language dynamically. Furthermore, MVMLT utilizes multi-view learning to encourage contextualized embeddings to align into a more refined language-invariant space. Extensive experiments with four languages show that our model achieves state-of-the-art results on zero-shot cross-lingual sentiment classification and dialogue state tracking tasks, demonstrating the effectiveness of our proposed model.