Huijia Wu


2024

pdf bib
HyperMoE: Towards Better Mixture of Experts via Transferring Among Experts
Hao Zhao | Zihan Qiu | Huijia Wu | Zili Wang | Zhaofeng He | Jie Fu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The Mixture of Experts (MoE) for language models has been proven effective in augmenting the capacity of models by dynamically routing each input token to a specific subset of experts for processing. Despite the success, most existing methods face a challenge for balance between sparsity and the availability of expert knowledge: enhancing performance through increased use of expert knowledge often results in diminishing sparsity during expert selection. To mitigate this contradiction, we propose HyperMoE, a novel MoE framework built upon Hypernetworks. This framework integrates the computational processes of MoE with the concept of knowledge transferring in multi-task learning. Specific modules generated based on the information of unselected experts serve as supplementary information, which allows the knowledge of experts not selected to be used while maintaining selection sparsity. Our comprehensive empirical evaluations across multiple datasets and backbones establish that HyperMoE significantly outperforms existing MoE methods under identical conditions concerning the number of experts. Our code is publicly available at https://github.com/Bumble666/Hyper_MoE

2023

pdf bib
An Adaptive Prompt Generation Framework for Task-oriented Dialogue System
Jun Gao | Liuyu Xiang | Huijia Wu | Han Zhao | Yiqi Tong | Zhaofeng He
Findings of the Association for Computational Linguistics: EMNLP 2023

The de facto way of utilizing black-box large language models (LLMs) to perform various downstream tasks is prompting. However, obtaining suitable prompts for specific tasks is still a challenging problem. While existing LLM-based methods demonstrate promising performance in task-oriented dialogue (TOD) task, they often require manual adjustment in prompt selection, or focus solely on dialogue understanding or generation. To address these issues, we propose an adaptive prompt generation framework to fully unleash the potential of LLMs for the comprehensive TOD system. Firstly, we design a trainable slot generator (TSG) that can generate domain and slot information in the belief state, which serves as prior knowledge for subsequent prompt generation. Next, we propose an adaptive prompt generator (APG) that utilizes the prior knowledge to generate prompts for the LLM, deriving the belief state and system response of the dialogue for evaluation. Finally, we evaluate our framework on the MultiWOZ 2.0 dataset. Extensive experiments demonstrate that our method outperforms existing methods. Our code and data will be released.

2016

pdf bib
An Empirical Exploration of Skip Connections for Sequential Tagging
Huijia Wu | Jiajun Zhang | Chengqing Zong
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

In this paper, we empirically explore the effects of various kinds of skip connections in stacked bidirectional LSTMs for sequential tagging. We investigate three kinds of skip connections connecting to LSTM cells: (a) skip connections to the gates, (b) skip connections to the internal states and (c) skip connections to the cell outputs. We present comprehensive experiments showing that skip connections to cell outputs outperform the remaining two. Furthermore, we observe that using gated identity functions as skip mappings works pretty well. Based on this novel skip connections, we successfully train deep stacked bidirectional LSTM models and obtain state-of-the-art results on CCG supertagging and comparable results on POS tagging.

2014

pdf bib
Generative CCG Parsing with OOV Prediction
Huijia Wu
Proceedings of the Third CIPS-SIGHAN Joint Conference on Chinese Language Processing