Huimin Wang


2023

pdf bib
CoAD: Automatic Diagnosis through Symptom and Disease Collaborative Generation
Huimin Wang | Wai Chung Kwan | Kam-Fai Wong | Yefeng Zheng
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Automatic diagnosis (AD), a critical application of AI in healthcare, employs machine learning techniques to assist doctors in gathering patient symptom information for precise disease diagnosis. The Transformer-based method utilizes an input symptom sequence, predicts itself through auto-regression, and employs the hidden state of the final symptom to determine the disease. Despite its simplicity and superior performance demonstrated, a decline in disease diagnosis accuracy is observed caused by 1) a mismatch between symptoms observed during training and generation, and 2) the effect of different symptom orders on disease prediction. To address the above obstacles, we introduce the CoAD, a novel disease and symptom collaborative generation framework, which incorporates several key innovations to improve AD: 1) aligning sentence-level disease labels with multiple possible symptom inquiry steps to bridge the gap between training and generation; 2) expanding symptom labels for each sub-sequence of symptoms to enhance annotation and eliminate the effect of symptom order; 3) developing a repeated symptom input schema to effectively and efficiently learn the expanded disease and symptom labels. We evaluate the CoAD framework using four datasets, including three public and one private, and demonstrate that it achieves an average 2.3% improvement over previous state-of-the-art results in automatic disease diagnosis. For reproducibility, we release the code and data at https://github.com/KwanWaiChung/coad.

pdf bib
UniTRec: A Unified Text-to-Text Transformer and Joint Contrastive Learning Framework for Text-based Recommendation
Zhiming Mao | Huimin Wang | Yiming Du | Kam-Fai Wong
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Prior study has shown that pretrained language models (PLM) can boost the performance of text-based recommendation. In contrast to previous works that either use PLM to encode user history as a whole input text, or impose an additional aggregation network to fuse multi-turn history representations, we propose a unified local- and global-attention Transformer encoder to better model two-level contexts of user history. Moreover, conditioned on user history encoded by Transformer encoders, our framework leverages Transformer decoders to estimate the language perplexity of candidate text items, which can serve as a straightforward yet significant contrastive signal for user-item text matching. Based on this, our framework, UniTRec, unifies the contrastive objectives of discriminative matching scores and candidate text perplexity to jointly enhance text-based recommendation. Extensive evaluation shows that UniTRec delivers SOTA performance on three text-based recommendation tasks.

pdf bib
Dialog Action-Aware Transformer for Dialog Policy Learning
Huimin Wang | Wai Chung Kwan | Kam-Fai Wong
Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue

Recent works usually address Dialog policy learning DPL by training a reinforcement learning (RL) agent to determine the best dialog action. However, existing works on deep RL require a large volume of agent-user interactions to achieve acceptable performance. In this paper, we propose to make full use of the plain text knowledge from the pre-trained language model to accelerate the RL agent’s learning speed. Specifically, we design a dialog action-aware transformer encoder (DaTrans), which integrates a new fine-tuning procedure named masked last action task to encourage DaTrans to be dialog-aware and distill action-specific features. Then, DaTrans is further optimized in an RL setting with ongoing interactions and evolves through exploration in the dialog action space toward maximizing long-term accumulated rewards. The effectiveness and efficiency of the proposed model are demonstrated with both simulator evaluation and human evaluation.

2021

pdf bib
A Collaborative Multi-agent Reinforcement Learning Framework for Dialog Action Decomposition
Huimin Wang | Kam-Fai Wong
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Most reinforcement learning methods for dialog policy learning train a centralized agent that selects a predefined joint action concatenating domain name, intent type, and slot name. The centralized dialog agent suffers from a great many user-agent interaction requirements due to the large action space. Besides, designing the concatenated actions is laborious to engineers and maybe struggled with edge cases. To solve these problems, we model the dialog policy learning problem with a novel multi-agent framework, in which each part of the action is led by a different agent. The framework reduces labor costs for action templates and decreases the size of the action space for each agent. Furthermore, we relieve the non-stationary problem caused by the changing dynamics of the environment as evolving of agents’ policies by introducing a joint optimization process that makes agents can exchange their policy information. Concurrently, an independent experience replay buffer mechanism is integrated to reduce the dependence between gradients of samples to improve training efficiency. The effectiveness of the proposed framework is demonstrated in a multi-domain environment with both user simulator evaluation and human evaluation.

2020

pdf bib
Learning Efficient Dialogue Policy from Demonstrations through Shaping
Huimin Wang | Baolin Peng | Kam-Fai Wong
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Training a task-oriented dialogue agent with reinforcement learning is prohibitively expensive since it requires a large volume of interactions with users. Human demonstrations can be used to accelerate learning progress. However, how to effectively leverage demonstrations to learn dialogue policy remains less explored. In this paper, we present Sˆ2Agent that efficiently learns dialogue policy from demonstrations through policy shaping and reward shaping. We use an imitation model to distill knowledge from demonstrations, based on which policy shaping estimates feedback on how the agent should act in policy space. Reward shaping is then incorporated to bonus state-actions similar to demonstrations explicitly in value space encouraging better exploration. The effectiveness of the proposed Sˆ2Agentt is demonstrated in three dialogue domains and a challenging domain adaptation task with both user simulator evaluation and human evaluation.