In long context scenarios, large language models (LLMs) face three main challenges: higher computational cost, performance reduction, and position bias. Research indicates that LLM performance hinges on the density and position of key information in the input prompt. Inspired by these findings, we propose LongLLMLingua for prompt compression towards improving LLMs’ perception of the key information to simultaneously address the three challenges. Our extensive evaluation across various long context scenarios demonstrates that LongLLMLingua not only enhances performance but also significantly reduces costs and latency. For instance, in the NaturalQuestions benchmark, LongLLMLingua boosts performance by up to 21.4% with around 4x fewer tokens in GPT-3.5-Turbo, leading to substantial cost savings. It achieves a 94.0% cost reduction in the LooGLE benchmark. Moreover, when compressing prompts of about 10k tokens at ratios of 2x-6x, LongLLMLingua can accelerate end-to-end latency by 1.4x-2.6x.
The performance of large language models (LLMs) is significantly influenced by the quality of the prompts provided. In response, researchers have developed enormous prompt engineering strategies aimed at modifying the prompt text to enhance task performance. In this paper, we introduce a novel technique termed position engineering, which offers a more efficient way to guide large language models. Unlike prompt engineering, which requires substantial effort to modify the text provided to LLMs, position engineering merely involves altering the positional information in the prompt without modifying the text itself. We have evaluated position engineering in two widely-used LLM scenarios: retrieval-augmented generation (RAG) and in-context learning (ICL). Our findings show that position engineering substantially improves upon the baseline in both cases. Position engineering thus represents a promising new strategy for exploiting the capabilities of large language models.
This paper focuses on task-agnostic prompt compression for better generalizability and efficiency. Considering the redundancy in natural language, existing approaches compress prompts by removing tokens or lexical units according to their information entropy obtained from a causal language model such as LLaMa-7B. The challenge is that information entropy may be a suboptimal compression metric: (i) it only leverages unidirectional context and may fail to capture all essential information needed for prompt compression; (ii) it is not aligned with the prompt compression objective.To address these issues, we propose a data distillation procedure to derive knowledge from an LLM to compress prompts without losing crucial information, and meantime, introduce an extractive text compression dataset. We formulate prompt compression as a token classification problem to guarantee the faithfulness of the compressed prompt to the original one, and use a Transformer encoder as the base architecture to capture all essential information for prompt compression from the full bidirectional context. Our approach leads to lower latency by explicitly learning the compression objective with smaller models such as XLM-RoBERTa-large and mBERT.We evaluate our method on both in-domain and out-of-domain datasets, including MeetingBank, LongBench, ZeroScrolls, GSM8K, and BBH. Despite its small size, our model shows significant performance gains over strong baselines and demonstrates robust generalization ability across different LLMs. Additionally, our model is 3x-6x faster than existing prompt compression methods, while accelerating the end-to-end latency by 1.6x-2.9x with compression ratios of 2x-5x.
Cross-lingual named entity recognition (NER) aims to train an NER system that generalizes well to a target language by leveraging labeled data in a given source language. Previous work alleviates the data scarcity problem by translating source-language labeled data or performing knowledge distillation on target-language unlabeled data. However, these methods may suffer from label noise due to the automatic labeling process. In this paper, we propose CoLaDa, a Collaborative Label Denoising Framework, to address this problem. Specifically, we first explore a model-collaboration-based denoising scheme that enables models trained on different data sources to collaboratively denoise pseudo labels used by each other. We then present an instance-collaboration-based strategy that considers the label consistency of each token’s neighborhood in the representation space for denoising. Experiments on different benchmark datasets show that the proposed CoLaDa achieves superior results compared to previous methods, especially when generalizing to distant languages.
Self-supervised representation learning has proved to be a valuable component for out-of-distribution (OoD) detection with only the texts of in-distribution (ID) examples. These approaches either train a language model from scratch or fine-tune a pre-trained language model using ID examples, and then take the perplexity output by the language model as OoD scores. In this paper, we analyze the complementary characteristic of both methods and propose a multi-level knowledge distillation approach that integrates their strengths while mitigating their limitations. Specifically, we use a fine-tuned model as the teacher to teach a randomly initialized student model on the ID examples. Besides the prediction layer distillation, we present a similarity-based intermediate layer distillation method to thoroughly explore the representation space of the teacher model. In this way, the learned student can better represent the ID data manifold while gaining a stronger ability to map OoD examples outside the ID data manifold with the regularization inherited from pre-training. Besides, the student model sees only ID examples during parameter learning, further promoting more distinguishable features for OoD detection. We conduct extensive experiments over multiple benchmark datasets, i.e., CLINC150, SST, ROSTD, 20 NewsGroups, and AG News; showing that the proposed method yields new state-of-the-art performance. We also explore its application as an AIGC detector to distinguish answers generated by ChatGPT and human experts. It is observed that our model exceeds human evaluators in the pair-expert task on the Human ChatGPT Comparison Corpus.
Large language models (LLMs) have been applied in various applications due to their astonishing capabilities. With advancements in technologies such as chain-of-thought (CoT) prompting and in-context learning (ICL), the prompts fed to LLMs are becoming increasingly lengthy, even exceeding tens of thousands of tokens. To accelerate model inference and reduce cost, this paper presents LLMLingua, a coarse-to-fine prompt compression method that involves a budget controller to maintain semantic integrity under high compression ratios, a token-level iterative compression algorithm to better model the interdependence between compressed contents, and an instruction tuning based method for distribution alignment between language models. We conduct experiments and analysis over four datasets from different scenarios, i.e., GSM8K, BBH, ShareGPT, and Arxiv-March23; showing that the proposed approach yields state-of-the-art performance and allows for up to 20x compression with little performance loss.
Few-shot named entity recognition (NER) systems aim at recognizing novel-class named entities based on only a few labeled examples. In this paper, we present a decomposed meta-learning approach which addresses the problem of few-shot NER by sequentially tackling few-shot span detection and few-shot entity typing using meta-learning. In particular, we take the few-shot span detection as a sequence labeling problem and train the span detector by introducing the model-agnostic meta-learning (MAML) algorithm to find a good model parameter initialization that could fast adapt to new entity classes. For few-shot entity typing, we propose MAML-ProtoNet, i.e., MAML-enhanced prototypical networks to find a good embedding space that can better distinguish text span representations from different entity classes. Extensive experiments on various benchmarks show that our approach achieves superior performance over prior methods.
Neural methods have been shown to achieve high performance in Named Entity Recognition (NER), but rely on costly high-quality labeled data for training, which is not always available across languages. While previous works have shown that unlabeled data in a target language can be used to improve cross-lingual model performance, we propose a novel adversarial approach (AdvPicker) to better leverage such data and further improve results. We design an adversarial learning framework in which an encoder learns entity domain knowledge from labeled source-language data and better shared features are captured via adversarial training - where a discriminator selects less language-dependent target-language data via similarity to the source language. Experimental results on standard benchmark datasets well demonstrate that the proposed method benefits strongly from this data selection process and outperforms existing state-of-the-art methods; without requiring any additional external resources (e.g., gazetteers or via machine translation).