Hung-Ting Chen
2025
Open-World Evaluation for Retrieving Diverse Perspectives
Hung-Ting Chen
|
Eunsol Choi
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
We study retrieving a set of documents that covers various perspectives on a complex and contentious question (e.g., will ChatGPT do more harm than good?). We curate a Benchmark for Retrieval Diversity for Subjective questions (BERDS), where each example consists of a question and diverse perspectives associated with the question, sourced from survey questions and debate websites. On this data, retrievers paired with a corpus are evaluated to surface a document set that contains diverse perspectives. Our framing diverges from most retrieval tasks in that document relevancy cannot be decided by simple string matches to references. Instead, we build a language model-based automatic evaluator that decides whether each retrieved document contains a perspective. This allows us to evaluate the performance of three different types of corpus (Wikipedia, web snapshot, and corpus constructed on the fly with retrieved pages from the search engine) paired with retrievers. Retrieving diverse documents remains challenging, with the outputs from existing retrievers covering all perspectives on only 33.74% of the examples. We further study the impact of query expansion and diversity-focused reranking approaches and analyze retriever sycophancy. Together, we lay the foundation for future studies in retrieval diversity handling complex queries.
2023
Continually Improving Extractive QA via Human Feedback
Ge Gao
|
Hung-Ting Chen
|
Yoav Artzi
|
Eunsol Choi
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
We study continually improving an extractive question answering (QA) system via human user feedback. We design and deploy an iterative approach, where information-seeking users ask questions, receive model-predicted answers, and provide feedback. We conduct experiments involving thousands of user interactions under diverse setups to broaden the understanding of learning from feedback over time. Our experiments show effective improvement from user feedback of extractive QA models over time across different data regimes, including significant potential for domain adaptation.
2022
Rich Knowledge Sources Bring Complex Knowledge Conflicts: Recalibrating Models to Reflect Conflicting Evidence
Hung-Ting Chen
|
Michael Zhang
|
Eunsol Choi
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Question answering models can use rich knowledge sources — up to one hundred retrieved passages and parametric knowledge in the large-scale language model (LM). Prior work assumes information in such knowledge sources is consistent with each other, paying little attention to how models blend information stored in their LM parameters with that from retrieved evidence documents. In this paper, we simulate knowledge conflicts (i.e., where parametric knowledge suggests one answer and different passages suggest different answers) and examine model behaviors. We find retrieval performance heavily impacts which sources models rely on, and current models mostly rely on non-parametric knowledgein their best-performing settings. We discover a troubling trend that contradictions among knowledge sources affect model confidence only marginally. To address this issue, we present a new calibration study, where models are discouraged from presenting any single answer when presented with multiple conflicting answer candidates in retrieved evidences.